Sixth Edition

\Iumerlcal

_Steven (]“'(]hapra

Raymond P. Canale

Numerical Methods
for Engineers

SIXTH EDITION

Steven C. Chapra

Berger Chair in Computing and Engineering
Tufts University

Raymond P. Canale

Professor Emeritus of Civil Engineering
University of Michigan

52 Higher Education

Boston Burr Ridge, IL Dubuque, IA New York San Franmsco Sit, LOUIS
Bangkok Bogota Caracas Kuala Lumpur - Lisbon London...Ma \
Milan Montreal New Delhi Santiago Seoul Singapore

The McGraw-Hill Companies

5 Higher Education

NUMERICAL METHODS FOR ENGINEERS, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Previous editions © 2006, 2002, and 1998. No part of this
publication may be reproduced or distributed in any form or by any means, or stored in adatabase or retrieval system, without the prior
written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other electronic storage or
transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.
This book is printed on acid-free paper.
1234567890VNH/VNH 09

ISBN 978-0-07-340106-5
MHID 0-07-3401064

Global Publisher: Raghothaman Srinivasan
Sponsoring Editor: Debra B. Hash

Director of Development: Kristine Tibbetts
Developmental Editor: Lorraine K. Buczek
Senior Marketing Manager: Curt Reynolds
Project Manager: Joyce Watters

Lead Production Supervisor: Sandy Ludovissy
Associate Design Coordinator: Brenda A. Rolwes
Cover Designer: Sudio Montage, S. Louis, Missouri
(USE) Cover Image: © BrandX/Jupiterlmages
Compositor: Macmillan Publishing Solutions
Typeface: 10/12 Times Roman

Printer: R. R. Donnelley Jefferson City, MO

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

MATLAB™ is aregistered trademark of The MathWorks, Inc.

Library of Congress Cataloging-in-Publication Data

Chapra, Steven C.

Numerical methods for engineers/ Steven C. Chapra, Raymond P. Canale. — 6th ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-07-340106-5 — ISBN 0-07-340106—4 (hard copy : ak. paper)
1. Engineering mathematics—Data processing. 2. Numerical calculations—Data processing 3. Microcomputers—
Programming. 1. Canale, Raymond P. 1I. Title.

TA345.C47 2010

518.02462—dc22 2008054296

www.mhhe.com

% 7
Margaret and Gabriel Chapra

Helen and Chester Canale

CONTENTS

PREFACE xiv

GUIDED TOUR xvi

ABOUT THE AUTHORS xviii

PART ONE
MODELING, PT1.1 Motivation 3
COMPUTERS, AND PT1.2 Mathematical Background 5

ERROR ANALYSIS 3

PT1.3 Orientation 8

CHAPTER 1
Mathematical Modeling and Engineering Problem Solving

1.1 A Simple Mathematical Model 11
1.2 Conservation Laws and Engineering 18
Problems 21

CHAPTER 2
Programming and Software 25

2.1 Packages and Programming 25
2.2 Structured Programming 26

2.3 Modular Programming 35

2.4 Excel 37

2.5 MATLAB 41

2.6 Mathcad 45

2.7 Other Languages and Libraries 46
Problems 47

CHAPTER 3
Approximations and Round-Off Errors 52

3.1 Significant Figures 53

3.2 Accuracy and Precision 55
3.3 Error Definitions 56

3.4 Round-Off Errors 62
Problems 76

CONTENTS

PART TWO

CHAPTER 4
Truncation Errors and the Taylor Series 78

4.1 The Taylor Series 78

4.2 Error Propagation 94

4.3 Total Numerical Error 98

4.4 Blunders, Formulation Errors, and Data Uncertainty 103
Problems 105

EPILOGUE: PART ONE 107

PT1.4 TradeOffs 107

PT1.5 Important Relationships and Formulas 110

PT1.6 Advanced Methods and Additional References 110

ROOTS OF
EQUATIONS 113

PT2.1 Motivation 113
PT2.2 Mathematical Background 115
PT2.3 Orientation 116

CHAPTER 5
Bracketing Methods 120

5.1 Graphical Methods 120

5.2 The Bisection Method 124

5.3 The False-Position Method 132

5.4 Incremental Searches and Determining Initial Guesses 138
Problems 139

CHAPTER 6
Open Methods 142

6.1 Simple Fixed-Point lteration 143

6.2 The Newton-Raphson Method 148
6.3 The Secant Method 154

6.4 Brent's Method 159

6.5 Multiple Roots 164

6.6 Systems of Nonlinear Equations 167
Problems 171

CHAPTER 7
Roots of Polynomials 174
7.1 Polynomials in Engineering and Science 174

7.2 Computing with Polynomials 177
7.3 Conventional Methods 180

vi

CONTENTS

PART THREE

7.4 Miller's Method 181

7.5 Bairstow’s Method 185

7.6 Other Methods 190

7.7 Root Location with Software Packages 190
Problems 200

CHAPTER 8
Case Studies: Roots of Equations 202

8.1 Ideal and Nonideal Gas Laws (Chemical/Bio Engineering) 202
8.2 Greenhouse Gases and Rainwater (Civil/Environmental Engineering)
8.3 Design of an Electric Circuit (Electrical Engineering) 207

8.4 Pipe Friction (Mechanical/Aerospace Engineering) 209

Problems 213

EPILOGUE: PART TWO 223

PT2.4 Trade-Offs 223

PT2.5 Important Relationships and Formulas 224

PT2.6 Advanced Methods and Additional References 224

205

LINEAR ALGEBRAIC
EQUATIONS 227

PT3.1 Motivation 227
PT3.2 Mathematical Background 229
PT3.3 Orientation 237

CHAPTER 9
Gauss Elimination 241

9.1 Solving Small Numbers of Equations 241
9.2 Naive Gauss Elimination 248

9.3 Pitfalls of Elimination Methods 254

9.4 Techniques for Improving Solutions 260
9.5 Complex Systems 267

9.6 Nonlinear Systems of Equations 267
9.7 GaussJordan 269

9.8 Summary 271

Problems 271

CHAPTER 10
LU Decomposition and Matrix Inversion 274

10.1 LU Decomposition 274

10.2 The Matrix Inverse 283

10.3 Error Analysis and System Condition 287
Problems 293

CONTENTS

vii

PART FOUR

CHAPTER 11
Special Matrices and Gauss-Seidel 296

11.1 Special Matrices 296
11.2 Gauss-Seidel 300

11.3 Linear Algebraic Equations with Software Packages 307
Problems 312

CHAPTER 12
Case Studies: Linear Algebraic Equations 315

12.1 Steady-State Analysis of a System of Reactors (Chemical/Bio
Engineering) 315

12.2 Analysis of a Statically Determinate Truss (Civil/Environmental
Engineering) 318

12.3 Currents and Voltages in Resistor Circuits (Electrical Engineering) 322

12.4 Spring-Mass Systems (Mechanical/Aerospace Engineering) 324

Problems 327

EPILOGUE: PART THREE 337

PT3.4 Trade-Offs 337

PT3.5 Important Relationships and Formulas 338

PT3.6 Advanced Methods and Additional References 338

OPTIMIZATION 341

PT4.1 Motivation 341
PT4.2 Mathematical Background 346
PT4.3 Orientation 347

CHAPTER 13

One-Dimensional Unconstrained Optimization 351
13.1 Golden-Section Search 352

13.2 Parabolic Interpolation 359

13.3 Newton’s Method 361

13.4 Brent's Method 364

Problems 364

CHAPTER 14

Multidimensional Unconstrained Optimization 367
14.1 Direct Methods 368

14.2 Gradient Methods 372

Problems 385

viii CONTENTS

CHAPTER 15
Constrained Optimization 387

15.1 Linear Programming 387

15.2 Nonlinear Constrained Optimization 398
15.3 Optimization with Software Packages 399
Problems 410

CHAPTER 16
Case Studies: Optimization 413

16.1 Least-Cost Design of a Tank (Chemical/Bio Engineering) 413

16.2 least-Cost Treatment of Wastewater (Civil/Environmental Engineering) 418

16.3 Maximum Power Transfer for a Circuit (Electrical Engineering) 422

16.4 Equilibrium and Minimum Potential Energy (Mechanical/Aerospace Engineering) 426
Problems 428

EPILOGUE: PART FOUR 436
PT4.4 Trade-Offs 436
PT4.5 Additional References 437

PART FIVE

CURVE FITTING 439 PT15.1 Motivation 439
PT5.2 Mathematical Background 441
PT5.3 Orientation 450

CHAPTER 17
Least-Squares Regression 454

17.1 Linear Regression 454

17.2 Polynomial Regression 470

17.3 Multiple Linear Regression 474
17.4 General Linear Least Squares 477
17.5 Nonlinear Regression 481
Problems 484

CHAPTER 18
Interpolation 488

18.1 Newton’s Divided-Difference Interpolating Polynomials 489
18.2 Lagrange Interpolating Polynomials 500

18.3 Coefficients of an Interpolating Polynomial 505

18.4 Inverse Interpolation 505

18.5 Additional Comments 506

18.6 Spline Interpolation 509

18.7 Multidimensional Interpolation 519

Problems 522

CONTENTS

CHAPTER 19
Fourier Approximation 524

19.1 Curve Fitting with Sinusoidal Functions 525
19.2 Continuous Fourier Series 531

19.3 Frequency and Time Domains 534

19.4 Fourier Integral and Transform 538

19.5 Discrete Fourier Transform (DFT) 540

19.6 Fast Fourier Transform (FFT) 542

19.7 The Power Spectrum 549

19.8 Curve Fitting with Software Packages 550
Problems 559

CHAPTER 20
Case Studies: Curve Fitting 561

20.1 Linear Regression and Population Models (Chemical/Bio
Engineering) 561

20.2 Use of Splines to Estimate Heat Transfer (Civil/Environmental
Engineering) 565

20.3 Fourier Analysis (Electrical Engineering) 567

20.4 Analysis of Experimental Data (Mechanical/Aerospace
Engineering) 568

Problems 570

EPILOGUE: PART FIVE 580

PT5.4 Trade-Offs 580

PT5.5 Important Relationships and Formulas 581

PT5.6 Advanced Methods and Additional References 583

PART SIX

NUMERICAL PT6.1 Motivation 585
DIFFERENTIATION PT6.2 Mathematical Background 595
AND PT6.3 Orientation 597

INTEGRATION 585

CHAPTER 21
Newton-Cotes Integration Formulas 601

21.1 The Trapezoidal Rule 603

21.2 Simpson’s Rules 613

21.3 Integration with Unequal Segments 622
21.4 Open Integration Formulas 625

21.5 Multiple Integrals 625

Problems 627

CONTENTS

PART SEVEN

CHAPTER 22
Integration of Equations 631

22.1 Newton-Cotes Algorithms for Equations 631
22.2 Romberg Integration 632

22.3 Adaptive Quadrature 638

22.4 Gauss Quadrature 640

22.5 Improper Integrals 648

Problems 651

CHAPTER 23
Numerical Differentiation 653

23.1 High-Accuracy Differentiation Formulas 653

23.2 Richardson Extrapolation 656

23.3 Derivatives of Unequally Spaced Data 658

23.4 Derivatives and Integrals for Data with Errors 659

23.5 Partial Derivatives 660

23.6 Numerical Integration/Differentiation with Software Packages 661
Problems 668

CHAPTER 24
Case Studies: Numerical Integration and Differentiation 671

24.1 Integration to Determine the Total Quantity of Heat (Chemical/Bio
Engineering) 671

24.2 Effective Force on the Mast of a Racing Sailboat (Civil/Environmental
Engineering) 673

24.3 Root-Mean-Square Current by Numerical Integration (Electrical
Engineering) 675

24.4 Numerical Integration to Compute Work (Mechanical/Aerospace
Engineering) 678

Problems 682

EPILOGUE: PART SIX 692
PT6.4 Trade-Offs 692

PT6.5 Important Relationships and Formulas 693
PT6.6 Advanced Methods and Additional References 693

ORDINARY
DIFFERENTIAL
EQUATIONS 697

PT7.1 Motivation 697
PT7.2 Mathematical Background 701
PT7.3 Orientation 703

CONTENTS

xi

CHAPTER 25
Runge-Kutta Methods 707

25.1 Euler's Method 708

25.2 Improvements of Euler's Method 719
25.3 RungeKutta Methods 727

25.4 Systems of Equations 737

25.5 Adaptive RungeKutta Methods 742
Problems 750

CHAPTER 26
Stiffness and Multistep Methods 752

26.1 Stiffness 752
26.2 Multistep Methods 756
Problems 776

CHAPTER 27
Boundary-Value and Eigenvalue Problems 778

27.1 General Methods for Boundary-Value Problems 779
27.2 Eigenvalue Problems 786

27.3 Odes and Eigenvalues with Software Packages 798
Problems 805

CHAPTER 28
Case Studies: Ordinary Differential Equations 808

28.1 Using ODEs to Analyze the Transient Response of a Reactor (Chemical/Bio
Engineering) 808

28.2 Predator-Prey Models and Chaos (Civil/Environmental Engineering) 815

28.3 Simulating Transient Current for an Electric Circuit (Electrical Engineering) 819

28.4 The Swinging Pendulum (Mechanical/Aerospace Engineering) 824

Problems 828

EPILOGUE: PART SEVEN 838
PT7.4 Trade-Offs 838

PT7.5 Important Relationships and Formulas 839
PT7.6 Advanced Methods and Additional References 839

PART EIGHT
PARTIAL PT8.1 Motivation 843
DIFFERENTIAL PT8.2 Orientation 846

EQUATIONS 843

xii

CONTENTS

CHAPTER 29
Finite Difference: Elliptic Equations 850

29.1 The Laplace Equation 850

29.2 Solution Technique 852

29.3 Boundary Conditions 858

29.4 The Control-Volume Approach 864
29.5 Software to Solve Elliptic Equations 867
Problems 868

CHAPTER 30
Finite Difference: Parabolic Equations 871

30.1 The Heat-Conduction Equation 871

30.2 Explicit Methods 872

30.3 A Simple Implicit Method 876

30.4 The Crank-Nicolson Method 880

30.5 Parabolic Equations in Two Spatial Dimensions 883
Problems 886

CHAPTER 31
Finite-Element Method 888

31.1 The General Approach 889

31.2 Finite-Element Application in One Dimension 893
31.3 Two-Dimensional Problems 902

31.4 Solving PDEs with Software Packages 906
Problems 910

CHAPTER 32
Case Studies: Partial Differential Equations 913

32.1 OneDimensional Mass Balance of a Reactor (Chemical/Bio
Engineering) 913

32.2 Deflections of a Plate (Civil/Environmental Engineering) 917

32.3 Two-Dimensional Electrostatic Field Problems (Electrical
Engineering) 219

32.4 Finite-Element Solution of a Series of Springs
(Mechanical/Aerospace Engineering) 922

Problems 926

EPILOGUE: PART EIGHT 929

PT8.3 Trade-Offs 929

PT8.4 Important Relationships and Formulas 929

PT8.5 Advanced Methods and Additional References 930

CONTENTS xiii

APPENDIX A: THE FOURIER SERIES 931

APPENDIX B: GETTING STARTED WITH MATLAB 933

APPENDIX C: GETTING STARTED WITH MATHCAD 941

BIBLIOGRAPHY 952

INDEX 955

xiv

PREFACE

It has been over twenty years since we published the first edition of thisbook. Over that pe-
riod, our original contention that numerical methods and computers would figure more
prominently in the engineering curriculum—particularly in the early parts—has been dra-
matically borne out. Many universities now offer freshman, sophomore, and junior courses
in both introductory computing and numerical methods. In addition, many of our col-
leagues are integrating computer-oriented problems into other courses at all levels of the
curriculum. Thus, this new edition is still founded on the basic premise that student engi-
neers should be provided with a strong and early introduction to numerical methods. Con-
sequently, although we have expanded our coverage in the new edition, we have tried to
maintain many of the features that made the first edition accessible to both lower- and
upper-level undergraduates. These include:

» Problem Orientation. Engineering students learn best when they are motivated by
problems. This is particularly true for mathematics and computing. Consequently, we
have approached numerical methods from a problem-solving perspective.

e Student-Oriented Pedagogy. We have developed a number of features to make this
book as student-friendly as possible. These include the overall organization, the use of
introductions and epilogues to consolidate major topics and the extensive use of worked
examples and case studies from all areas of engineering. We have also endeavored to
keep our explanations straightforward and oriented practically.

e Computational Tools. We empower our students by helping them utilize the standard
“point-and-shoot” numerical problem-solving capabilities of packages like Excel,
MATLAB, and Mathcad software. However, students are also shown how to develop
simple, well-structured programs to extend the base capabilities of those environments.
This knowledge carries over to standard programming languages such as Visual Basic,
Fortran 90 and C/C++. We believe that the current flight from computer programming
represents something of a“dumbing down” of the engineering curriculum. The bottom
lineisthat aslong as engineers are not content to be tool limited, they will have to write
code. Only now they may be called “macros’ or “M-files.” Thisbook is designed to em-
power them to do that.

Beyond these five original principles, the sixth edition has a number of new features:

* New and Expanded Problem Sets. Most of the problems have been modified so that
they yield different numerical solutions from previous editions. In addition, avariety of
new problems have been included.

* New Material. New sections have been added. Theseinclude Brent’s methods for both
root |ocation and optimization, and adaptive quadrature.

* New Case Studies: Severa interesting new case studies have been devel oped.

PREFACE XV

e Mathcad. Along with Excel and MATLAB, we have added material on the popular
Mathcad software package.

Asaways, our primary intent in writing this book is to provide students with a sound
introduction to numerical methods. We believe that motivated students who enjoy numeri-
cal methods, computers, and mathematics will, in the end, make better engineers. If our
book fosters an enthusiasm for these subjects, we will consider our efforts a success.

Acknowledgments. We would like to thank our friends at McGraw-Hill. In particular,
Lorraine Buczek, DebraHash, Bill Stenquist, Joyce Watters, and Lynn L ustberg, who pro-
vided a positive and supportive atmosphere for creating this edition. As usual, Beatrice
Sussman did a masterful job of copyediting the manuscript. As in past editions, David
Clough (University of Colorado), Mike Gustafson (Duke), and Jerry Stedinger (Cornell
University) generously shared their insights and suggestions. Useful suggestions were also
made by Bill Philpot (Cornell University), Jim Guilkey (University of Utah), Dong-Il Seo
(Chungnam National University, Korea), and Raymundo Cordero and Karim Muci
(ITESM, Mexico). The present edition has also benefited from the reviews and suggestions
provided by the following colleagues:

Betty Barr, University of Houston

Jordan Berg, Texas Tech University

Estelle M. Eke, California State University, Sacramento
Yogesh Jaluria, Rutgers University

S. Graham Kelly, The University of Akron

Subha Kumpaty, Milwaukee School of Engineering
Eckart Meiburg, University of California-Santa Barbara
Prashant Mhaskar, McMaster University

Luke Olson, University of Illinois at Urbana-Champaign
Joseph H. Pierluissi, University of Texas at El Paso

Juan Peran, Universidad Nacional de Educacion a Distancia (UNED)
Scott A. Socolofsky, TexasA&M University

It should be stressed that although we received useful advice from the af orementioned
individuals, we are responsible for any inaccuracies or mistakes you may detect in this edi-
tion. Please contact Steve Chapraviae-mail if you should detect any errorsin this edition.

Finally, we would like to thank our family, friends, and students for their enduring
patience and support. In particular, Cynthia Chapra, Danielle Husley, and Claire Candle are
always there providing understanding, perspective, and love.

Steven C. Chapra
Medford, Massachusetts
steven.chapra@tufts.edu

Raymond P. Canale
Lake Leelanau, Michigan

GUIDED TOUR

To provide insight into numerical methods, we have
organized the text into parts and present unifying
information through the Motivation, Mathematical
background, Orientation and Epilogue elements.

PT36
Advanced
methods

Linear Algebraic
Equations

PT35
Important
formulas

CHAPTER 9

95
Complex
systems.

Gauss
Elimination

e
12.4 "
Mechanical decomposition,

engineering

123
Electrical
engineering,

CHAPTER 12

102
Matrix
inverse

LU Decomposition

Engineering
Case Studies

Matrix Inversion

CHAPTER 11

Special Matrices
and Gauss-Seidel

2.7
Chemical
engineerin;

gineerns T

12.3 Becausethe system shown in Fig. 12.3isat steady state, what
can be said regarding the four flows: Q1. Qus, Qas and Qes?

125 Solve the same system as specified in Prob. 12.4, but set
Q12 = Qs4 =0 and Qi5 = Qa4 = 3. Assume that the inflows

of flow to recompute the values for the other flows.
126 Figure P12.6 shows three reactors linked by pipes. As indi-
cated, therateof transfer of chemicalsthrough each pipeisequal toa
flow rate(Q. second) the
concentration of the reactor from which the flow originates (c, with

this system.

solvent carrying aweight fraction X of the

PROBLEMS 327
PROBLEMS

Chemical/Bio Engineering each reservoir and the following set of simultaneous linear alge-
12.1 Perform the same computation asin Sec. 12.1, but change co; braic equations results:
t0 20 and cgs o 6. Also change the following flows Qo = 6,
Qi2=4, Qo4 =2, and Qs = 12 13422 0 0 0 o 7505
12.2 If the input to reactor 3in Sec. 12.1is decreased 25 percent, | —13422 12.252 0 0 o 300
use the matrix inverse to compute the percent change in the con- 0 —1225%2 12377 0 . 102
centration of reactors 2 and 4? 0 0 —12377 12797] le 20

12.4 Recompute the concentrations for the five reactors shown in Where the right-hand-side vector consists of the loadings of chio-
Fig. 12.3,if the flows are changed to: rideto each of the four lakes and cs, ¢, s, and cs = the resulting
chloride concentrations for Lakes Powell, Mead, Mohave, and

Qu=5 Qu=3 Q=2 Q=2 Havasu, respectively.
Qs=4 Qs=3 Qu=3 Qu=7 (a) Use the matrix inverse to solve for the concentrations in each
Qu=4 Qu=8 Qu=0 Qu=10 of the four lakes

(b) How much must the loading to Lake Powell be reduced in

order for the chloride concentration of Lake Havasu to be 75.
(¢) Using the column-sum norm, compute the condition number
(Qou Qua) and outflows (Qua, Qss) are the same. Use conservation and how many suspect digits would be generated by solving

12.9 A Stage extraction process is depicted in Fig. P12.9. In such
systems, a stream containing a weight fraction Yi, of a chemical
enters from the left at a mass flow rate of F;. Simultaneously, a

enter

Special
matrices

1

Gau:
Seidel

Every chapter contains new and revised homewor k
problems. Eighty percent of the problems are new
or revised. Challenging problems drawn from all
engineering disciplines are included in the text.

unitsof cubic meter). If state,
the transfer into each reactor will balance the transfer out. Develop

can be represented as

their FiYioi + FeXisa = FiYi + B2Xi
12.7 Employing the same basic approach as in Sec. 12.1, deter-
mine the concentration of chloridein each of the Great L akes using
the information shown in Fig. P12.7.

Yiand X asin

Sections of the text as well as homework problems
are devoted to implementing numerical methods
with Microsoft’s Excel, The MathWorks, I nc.
MATLAB, and PTC, Inc. Mathcad software.

XVi

from theright at aflow rate of F,. Thus, for stagei, am|

At each stage, an eqilibrium is assumed to be establi

12.8 The er Colorado River consists of a sgries of four Xi
L i writf

7.7 _ROOT LOCATION WITH SOFTWARE 193

‘When the OK button is selected, a dialogue box will open with a report on the success of
the operation. For the present case, the Solver obtains the correct solution:

[A ER ¢ [o |
1] 2.00003
2y 2.999984
2 |ulxy) 0.000176
4 |v(x,y) 0.000202
s
6 |Sum of squares [7.19E 08]
7

It should be noted that the Solver can fail. Its success depends on (1) the condition of
the system of equations and/or (2) the quality of the initial guesses. Thus, the successful
outcome of the previous example is not guaranteed. Despite this, we have found Solver
useful enough to make it afeasible option for quickly obtaining rootsin awide range of en-
gineering applications.

7.7.2 MATLAB

Assummarizedin Table 7.1, MATLAB software is capable of locating roots of single alge-
braic and transcendental equations. It is superb at manipulating and locating the roots of
polynomials.

Thef zer o function is designed to locate one root of a single function. A simplified
representation of its syntax is

fzero(f, xo, opti ons)

where f is the function you are analyzing, X, is the initial guess, and options are the opti-
mization parameters (these are changed using the function opt i nset). If options are
omitted, defaulayalues are empjoyed. Ngte that twgayesses can be ed. If

10.3 ERROR ANALYSIS AND SYSTEM CONDITION 291

There are 28 engineering case studies to help
students connect the numerical methods to the major
fields of engineering.

EXAMPLE 10.4

Matrix Condition Evaluation

Problem Statement. The Hilbert matrix, which is notoriously ill-conditioned, can be
represented generally as

1 12 3 - 1/n
12 13 1/4 1/ +1)

Un Y@+ 1/0+2) yen-1

Use the row-sum norm to estimate the matrix condition number for the 3 x 3 Hilbert

matrix,
1 1/2 173
[A] = [1/2 1/3 1/4}
1/3 1/4 1/5
Solution. First, the matrix can be normalized so that the maximum element in each row
is1,
112 1/3
[A] = [1 2/3 1/2]
1 3/4 3/5

Summing each of the rows gives 1.833, 2.1667, and 2.35. Thus, the third row has the
largest sum and the row-sum norm is

3.3
Ale=14>+2=2
Al =1+ 7 +5 =235

The inverse of the scaled matrix can be computed as

T

rical Meth t Engineer
— Numerical Melhods for Engineers Ge
e Steven C. Chaprs and Raymasd P, Canale
Latde o Camens 150%: 007401064
A 11 et © 3010
i The sxth achition of Sumesical Messody for {nginsers with Sbtwars sndl Programeming
el stiorn contirurs 13 it ol anpberee
eatructons ko hi tast b - b
Stucdents i for
s aed e spplicaions,
echating 31 sngiessring dacipkoes.
Tgaln The neviik e "
Userruere: the .
2 Mathamatical lackgound, snd Oriersation, preparing e studer for what s 5 come
Pamsmcez: | | in i rratheatiag ared eregagrng marree. Esch part chosen with an Epue contaning
3 sectons caled Trade-0ff, Importam Galatiombips sad Fomuts, and Advanced
) Mahoch and Additional Reterences. Much =osm than & surmeary, the
n anct presicen 8 pesek i o
mbvascend mathiats. Users wl s o acitirs ko, e SeabyMATLAS wel

eatol
M 1. e B o of B

Excel with VILA. This inclucdes matevisl o cleweioping MATLAN m-Fley aecl VILA macrss.
i, iy, ey ww ikt

8 4 I the peoblems,
such arman im Birchnology and biomedical enginesing

e o g s P Py
o Toa Mo 1t Lo

9 -18 10
[A] 6 96 —60 }
30

Our text features numerous worked examplesto
provide students with step-by-step illustrations
of how the numerical methods are implemented.

32.1

Case Studies: Partial
Differential Equations

The purpose of this chapter is to apply the methods from Part Eight to practical engineer-
ing problems. In Sec. 32.1, a parabolic PDE is used to compute the time-variable distribu-
tion of a chemical along the longitudinal axes of a rectangular reactor. This example illus-
trates how the instability of a solution can be due to the nature of the PDE rather than to
properties of the numerical method.

Sections 32.2 and 32.3 involve applications of the Poisson and Laplace equations to
civil and electrical engineering problems, respectively. Among other things, this will allow
you to see similarities as well as differences between field problems in these areas of engi-
neering. In addition, they can be contrasted with the heated-plate problem that has served
as our prototype system in this part of the book. Section 32.2 deals with the deflection of a
square plate, whereas Sec. 32.3 is devoted to computing the voltage distribution and charge
flux for a two-dimensional surface with a curved edge.

Section 32.4 presents a finite-element analysis as applied to a series of springs. This
application is closer in spirit to finite-element applications in mechanics and structures than
was the temperature field problem used to illustrate the approach in Chap. 31.

ONE-DIMENSIONAL MASS BALANCE OF A REACTOR
(CHEMICAL/BIO ENGINEERING)

Background. Chemical engineers make extensive use of idealized reactors in their de-
sign work. In Secs. 12.1 and 28.1, we focused on single or coupled well-mixed reactors.
These are examples of lumped-parameter systems (recall Sec. PT3.1.2).

FIGURE 32.1

An elongated reactor with a
single entry and exit point,

A mass balance is developed
around a finite segment along
the tank’s longitudinal axis in
order fo derive a differential
equation for the concentration.

. I VS NN N WV VI AVANP NG N

Our website contains additional resources for both
instructors and students.

xXvil

xviii

ABOUT THE AUTHORS

Steve Chapra teaches in the Civil and Environmental Engineering Department at Tufts
University where he holds the Louis Berger Chair in Computing and Engineering. His
other books include Surface Water-Quality Modeling and Applied Numerical Methods
with MATLAB.

Dr. Chapra received engineering degrees from Manhattan College and the University
of Michigan. Before joining the faculty at Tufts, he worked for the Environmental Protec-
tion Agency and the National Oceanic and Atmospheric Administration, and taught at
Texas A&M University and the University of Colorado. His genera research interests
focus on surface water-quality modeling and advanced computer applications in environ-
mental engineering.

He hasreceived anumber of awardsfor his scholarly contributions, including the 1993
Rudolph Hering Medal (ASCE) and the 1987 Meriam-Wiley Distinguished Author Award
(American Society for Engineering Education). He has also been recognized as the out-
standing teacher among the engineering faculties at both Texas A&M University (1986
Tenneco Award) and the University of Colorado (1992 Hutchinson Award).

Raymond P. Canale is an emeritus professor at the University of Michigan. During
his over 20-year career at the university, he taught numerous courses in the area of com-
puters, numerical methods, and environmental engineering. He also directed extensive
research programs in the area of mathematical and computer modeling of aquatic ecosys-
tems. He has authored or coauthored several books and has published over 100 scientific
papers and reports. He has also designed and developed personal computer software to
facilitate engineering education and the solution of engineering problems. He has been
given the Meriam-Wiley Distinguished Author Award by the American Society for Engi-
neering Education for his books and software and several awards for his technical
publications.

Professor Canale is now devoting his energies to applied problems, where he works
with engineering firms and industry and governmental agencies as a consultant and expert
witness.

Numerical Methods
for Engineers

. - £
PART ONE

MODELING, COMPUTERS,
AND ERROR ANALYSIS

PT1.1

MOTIVATION

Numerical methods are techniques by which mathematical problems are formulated so that
they can be solved with arithmetic operations. Although there are many kinds of numerical
methods, they have one common characteristic: they invariably involve large numbers of
tedious arithmetic calculations. It is little wonder that with the development of fast, effi-
cient digital computers, the role of numerical methods in engineering problem solving has
increased dramatically in recent years.

PT1.1.1 Noncomputer Methods

Beyond providing increased computational firepower, the widespread availability of com-
puters (especially personal computers) and their partnership with numerical methods has
had a significant influence on the actual engineering problem-solving process. In the pre-
computer era there were generally three different ways in which engineers approached
problem solving:

1. Solutions were derived for some problems using analytical, or exact, methods. These
solutions were often useful and provided excellent insight into the behavior of some
systems. However, analytical solutions can be derived for only a limited class of
problems. These include those that can be approximated with linear models and those
that have simple geometry and low dimensionality. Consequently, analytical solutions
are of limited practical value because most real problems are nonlinear and involve
complex shapes and processes.

2. Graphical solutions were used to characterize the behavior of systems. These graphical
solutions usually took the form of plots or nomographs. Although graphical techniques
can often be used to solve complex problems, the results are not very precise.
Furthermore, graphical solutions (without the aid of computers) are extremely tedious
and awkward to implement. Finally, graphical techniques are often limited to problems
that can be described using three or fewer dimensions.

3. Calculators and slide rules were used to implement numerical methods manually.
Although in theory such approaches should be perfectly adequate for solving complex
problems, in actuality several difficulties are encountered. Manual calculations are
slow and tedious. Furthermore, consistent results are elusive because of simple
blunders that arise when numerous manual tasks are performed.

During the precomputer era, significant amounts of energy were expended on the so-
lution technique itself, rather than on problem definition and interpretation (Fig. PT1.1a).
This unfortunate situation existed because so much time and drudgery were required to ob-
tain numerical answers using precomputer techniques.

MODELING, COMPUTERS, AND ERROR ANALYSIS

FIGURE PT1.1

The three phases of engineering
problem solving in (a) the
precomputer and (b) the
computer era. The sizes of the
boxes indicate the level of
emphasis direcfed toward each
phase. Computers facilitate the
implementation of solution
techniques and thus allow more
emphasis fo be placed on the
creative aspects of problem
formulation and interpretation of
resulfs.

FORMULATION O EIAIEL]
Fundamental In-depth.expo.smon
. of relationship of
laws explained
. problem to fundamental
briefly
laws
SOLUTION SOLUTION
Elaborate and often Easv-to-use
complicated method to co; uter
make problem tractable p
method
INTERPRETATION INTERPRETATION

Ease of calculation
allows holistic thoughts
and intuition to develop;

system sensitivity and behavior
can be studied

@ (b)

In-depth analysis
limited by time-
consuming solution

Today, computers and numerical methods provide an alternative for such compli-
cated calculations. Using computer power to obtain solutions directly, you can approach
these calculations without recourse to simplifying assumptions or time-intensive tech-
niques. Although analytical solutions are still extremely valuable both for problem solv-
ing and for providing insight, numerical methods represent alternatives that greatly en-
large your capabilities to confront and solve problems. As a result, more time is available
for the use of your creative skills. Thus, more emphasis can be placed on problem for-
mulation and solution interpretation and the incorporation of total system, or “holistic,”
awareness (Fig. PT1.1b.)

PT1.1.2 Numerical Methods and Engineering Practice

Since the late 1940s the widespread availability of digital computers has led to a veritable
explosion in the use and development of numerical methods. At first, this growth was
somewhat limited by the cost of access to large mainframe computers, and, consequently,
many engineers continued to use simple analytical approaches in a significant portion of
their work. Needless to say, the recent evolution of inexpensive personal computers has

PT1.2 MATHEMATICAL BACKGROUND 5

PT1.2

given us ready access to powerful computational capabilities. There are several additional
reasons why you should study numerical methods:

1.

Numerical methods are extremely powerful problem-solving tools. They are capable of
handling large systems of equations, nonlinearities, and complicated geometries that
are not uncommon in engineering practice and that are often impossible to solve
analytically. As such, they greatly enhance your problem-solving skills.

During your careers, you may often have occasion to use commercially available
prepackaged, or “canned,” computer programs that involve numerical methods. The
intelligent use of these programs is often predicated on knowledge of the basic theory
underlying the methods.

Many problems cannot be approached using canned programs. If you are conversant
with numerical methods and are adept at computer programming, you can design your
own programs to solve problems without having to buy or commission expensive
software.

Numerical methods are an efficient vehicle for learning to use computers. It is well
known that an effective way to learn programming is to actually write computer
programs. Because numerical methods are for the most part designed for implementation
on computers, they are ideal for this purpose. Further, they are especially well-suited to
illustrate the power and the limitations of computers. When you successfully implement
numerical methods on a computer and then apply them to solve otherwise intractable
problems, you will be provided with a dramatic demonstration of how computers can
serve your professional development. Atthe same time, you will also learn to
acknowledge and control the errors of approximation that are part and parcel of large-
scale numerical calculations.

Numerical methods provide a vehicle for you to reinforce your understanding of
mathematics. Because one function of numerical methods is to reduce higher
mathematics to basic arithmetic operations, they get at the “nuts and bolts” of some
otherwise obscure topics. Enhanced understanding and insight can result from this
alternative perspective.

MATHEMATICAL BACKGROUND

Every part in this book requires some mathematical background. Consequently, the intro-
ductory material for each part includes a section, such as the one you are reading, on math-
ematical background. Because Part One itself is devoted to background material on math-
ematics and computers, this section does not involve a review of a specific mathematical
topic. Rather, we take this opportunity to introduce you to the types of mathematical sub-
ject areas covered in this book. As summarized in Fig. PT1.2, these are

1.

Roots of Equations (Fig. PT1.2a). These problems are concerned with the value of a
variable or a parameter that satisfies a single nonlinear equation. These problems are
especially valuable in engineering design contexts where it is often impossible to
explicitly solve design equations for parameters.

Systems of Linear Algebraic Equations (Fig. PT1.2b). These problems are similar in
spirit to roots of equations in the sense that they are concerned with values that satisfy

6

MODELING, COMPUTERS, AND ERROR ANALYSIS

FIGURE PT1.2
Summary of the numerical
methods covered in this book.

(a) Part 2: Roots of equations
Solve f(x) = 0 for x.

(b) Part 3: Linear algebraic equations
Given the a's and the c's, solve

A%y + 81X = G4
A%y + 89X = C;
for the X's.

(C) Part 4: Optimization

Determine x that gives optimum f(x).

(d) Part 5: Curve fitting
f(x)

Regression

(€) Part 6: Integration
I = [Pf(x) dx
Find the area under the curve.

f(x)
Root
X
Xz
——————— Solution
X1
f(X)
\/N
X
X
f(x)

(.

PT1.2 MATHEMATICAL BACKGROUND 7

FIGURE PT1.2

(concluded) (f) Part 7: Ordinary differential equations

Given y
dy Ay
d AT f(t,y)
solve for y as a function of t. Slope =
Cath dl
Yi.1=Yi+flt) At L ft)

(g) Part 8: Partial differential equations
Given
%u . 9% y
= 0 = S
e ay? s
solve for u as a function of
xandy

equations. However, in contrast to satisfying a single equation, a set of values is sought
that simultaneously satisfies a set of linear algebraic equations. Such equations arise in
a variety of problem contexts and in all disciplines of engineering. In particular, they
originate in the mathematical modeling of large systems of interconnected elements
such as structures, electric circuits, and fluid networks. However, they are also
encountered in other areas of numerical methods such as curve fitting and differential
equations.

3. Optimization (Fig. PT1.2c). These problems involve determining a value or values
of an independent variable that correspond to a “best” or optimal value of a function.
Thus, as in Fig. PT1.2c, optimization involves identifying maxima and minima. Such
problems occur routinely in engineering design contexts. They also arise in a number
of other numerical methods. We address both single- and multi-variable unconstrained
optimization. We also describe constrained optimization with particular emphasis on
linear programming.

4. Curve Fitting (Fig. PT1.2d). You will often have occasion to fit curves to data points.
The techniques developed for this purpose can be divided into two general categories:
regression and interpolation. Regression is employed where there is a significant
degree of error associated with the data. Experimental results are often of this kind. For
these situations, the strategy is to derive a single curve that represents the general trend
of the data without necessarily matching any individual points. In contrast,
interpolation is used where the objective is to determine intermediate values between
relatively error-free data points. Such is usually the case for tabulated information. For
these situations, the strategy is to fit a curve directly through the data points and use the
curve to predict the intermediate values.

5. Integration (Fig. PT1.2e). As depicted, a physical interpretation of numerical
integration is the determination of the area under a curve. Integration has many

MODELING, COMPUTERS, AND ERROR ANALYSIS

PT1.3

applications in engineering practice, ranging from the determination of the centroids of
oddly shaped objects to the calculation of total quantities based on sets of discrete
measurements. In addition, numerical integration formulas play an important role in
the solution of differential equations.

6. Ordinary Differential Equations (Fig. PT1.2f). Ordinary differential equations are of
great significance in engineering practice. This is because many physical laws are
couched in terms of the rate of change of a quantity rather than the magnitude of the
quantity itself. Examples range from population forecasting models (rate of change of
population) to the acceleration of a falling body (rate of change of velocity). Two types
of problems are addressed: initial-value and boundary-value problems. In addition, the
computation of eigenvalues is covered.

7. Partial Differential Equations (Fig. PT1.2g). Partial differential equations are used to
characterize engineering systems where the behavior of a physical quantity is couched
in terms of its rate of change with respect to two or more independent variables.
Examples include the steady-state distribution of temperature on a heated plate (two
spatial dimensions) or the time-variable temperature of a heated rod (time and one
spatial dimension). Two fundamentally different approaches are employed to solve
partial differential equations numerically. In the present text, we will emphasize finite-
difference methods that approximate the solution in a pointwise fashion (Fig. PT1.2g).
However, we will also present an introduction to finite-element methods, which use a
piecewise approach.

ORIENTATION

Some orientation might be helpful before proceeding with our introduction to numerical
methods. The following is intended as an overview of the material in Part One. In addition,
some objectives have been included to focus your efforts when studying the material.

PT1.3.1 Scope and Preview

Figure PT1.3 is a schematic representation of the material in Part One. We have designed
this diagram to provide you with a global overview of this part of the book. We believe that
a sense of the “big picture” is critical to developing insight into numerical methods. When
reading a text, it is often possible to become lost in technical details. Whenever you feel
that you are losing the big picture, refer back to Fig. PT1.3 to reorient yourself. Every part
of this book includes a similar figure.

Figure PT1.3 also serves as a brief preview of the material covered in Part One.
Chapter 1 is designed to orient you to numerical methods and to provide motivation by
demonstrating how these techniques can be used in the engineering modeling process.
Chapter 2 is an introduction and review of computer-related aspects of numerical methods
and suggests the level of computer skills you should acquire to efficiently apply succeed-
ing information. Chapters 3 and 4 deal with the important topic of error analysis, which
must be understood for the effective use of numerical methods. In addition, an epilogue is
included that introduces the trade-offs that have such great significance for the effective
implementation of numerical methods.

PT1.3 ORIENTATION

PT 1.2
Mathematical
background

PT 1.3
Orientation

PT 1.1
Motivation

1.1
A simple
model

PART 1

PT16 Modeling,
Computers,
and
1.2
Conservation

Advanced
methods

Error Analysis
laws

CHAPTER 1
Mathematical

PT 1.5
Important
formulas
Modeling and
Engineering
Problem

Solving

PT 1.4
Trade-offs

2.1
Packages and
programming

252,
Structured
programming

2.3
Modular
programming

4.4
Miscellaneous
errors

CHAPTER 2
Programming
and Software

CHAPTER 4
Truncation
Errors and the
Taylor
Series

4.3
Total numerical
error

CHAPTER 3

Approximations
and Round-Off
Errors

257
Languages and
libraries

4.2
Error
propagation

4.1
Taylor
series

2.6
Mathcad

3.1
Significant
figures

3.4
Round-off
errors

3.2
Accuracy and
precision

359
Error
definitions

FIGURE PT1.3
Schematic of the organization of the material in Part One: Modeling, Computers, and Error Analysis

MODELING, COMPUTERS, AND ERROR ANALYSIS

TABLE PT1.1 Specific study objectives for Part One.

. Recognize the difference between analytical and numerical solutions.

. Understand how conservation laws are employed to develop mathematical models of physical systems.

. Define topdown and modular design.

. Delineate the rules that underlie structured programming.

. Be capable of composing structured and modular programs in a high-level computer language.

. Know how fo translate structured flowcharts and pseudocode into code in a highlevel language.

. Start to familiarize yourself with any software packages that you will be using in conjunction

with this text.

8. Recognize the distinction between truncation and round-off errors.

9. Understand the concepts of significant figures, accuracy, and precision.

0. Recognize the difference between true relative error e, approximate relafive error ¢, and acceptable
error &5, and understand how ¢, and & are used fo terminafe an iferafive computation.

11. Understand how numbers are represented in digital computers and how this representation induces
round-off error. In particular, know the difference between single and extended precision.

12. Recognize how computer arithmetic can infroduce and amplify round-off errors in calculations. In
particular, appreciate the problem of subtractive cancellation.

13. Understand how the Taylor series and its remainder are employed to represent continuous functions.

14. Know the relationship between finite divided differences and derivatives.

15. Be able fo analyze how errors are propagated through functional relationships.

16. Be familiar with the concepts of stability and condition.

17. Familiarize yourself with the trade-offs outlined in the Epilogue of Part One.

NO O ~NwhN—

PT1.3.2 Goals and Obijectives

Study Objectives. Upon completing Part One, you should be adequately prepared to
embark on your studies of numerical methods. In general, you should have gained a fun-
damental understanding of the importance of computers and the role of approximations and
errors in the implementation and development of numerical methods. In addition to these
general goals, you should have mastered each of the specific study objectives listed in
Table PT1.1.

Computer Objectives. Upon completing Part One, you should have mastered sufficient
computer skills to develop your own software for the numerical methods in this text. You
should be able to develop well-structured and reliable computer programs on the basis of
pseudocode, flowcharts, or other forms of algorithms. You should have developed the ca-
pability to document your programs so that they may be effectively employed by users.
Finally, in addition to your own programs, you may be using software packages along with
this book. Packages like Excel, Mathcad, or The MathWorks, Inc. MATLAB® program are
examples of such software. You should become familiar with these packages, so that you
will be comfortable using them to solve numerical problems later in the text.

Mathematical Modeling and
Engineering Problem Solving

Knowledge and understanding are prerequisites for the effective implementation of any
tool. No matter how impressive your tool chest, you will be hard-pressed to repair a car if
you do not understand how it works.

This is particularly true when using computers to solve engineering problems. Al-
though they have great potential utility, computers are practically useless without a funda-
mental understanding of how engineering systems work.

This understanding is initially gained by empirical means—that is, by observation and
experiment. However, while such empirically derived information is essential, it is only
half the story. Over years and years of observation and experiment, engineers and scientists
have noticed that certain aspects of their empirical studies occur repeatedly. Such general
behavior can then be expressed as fundamental laws that essentially embody the cumula-
tive wisdom of past experience. Thus, most engineering problem solving employs the two-
pronged approach of empiricism and theoretical analysis (Fig. 1.1).

It must be stressed that the two prongs are closely coupled. As new measurements are
taken, the generalizations may be modified or new ones developed. Similarly, the general-
izations can have a strong influence on the experiments and observations. In particular,
generalizations can serve as organizing principles that can be employed to synthesize ob-
servations and experimental results into a coherent and comprehensive framework from
which conclusions can be drawn. From an engineering problem-solving perspective, such
a framework is most useful when it is expressed in the form of a mathematical model.

The primary objective of this chapter is to introduce you to mathematical modeling
and its role in engineering problem solving. We will also illustrate how numerical methods
figure in the process.

A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

* functions

Dependent independent
variable variables

, parameters forcing) 1.1

12

MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

FIGURE 1.1
The engineering problem-
solving process.

Problem
definition

Problem-solving tools:
computers, statistics,
numerical methods,
graphics, etc.

Numeric or
graphic results

Societal interfaces:
scheduling, optimization,
communication,
public interaction,
etc.

Implementation

where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon the system.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic re-
lationship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F =ma 1.2)

where F = net force acting on the body (N, or kg m/s?), m = mass of the object (kg), and
a = its acceleration (m/s?).

1.1 A SIMPLE MATHEMATICAL MODEL 13

FIGURE 1.2

Schematic diagram of the
forces acting on a falling
parachutist. Fp is the downward
force due fo gravity. Fy is the
upward force due fo air
resistance.

The second law can be recast in the format of Eq. (1.1) by merely dividing both sides
by m to give

a=— (1.3)

where a = the dependent variable reflecting the system’s behavior, F = the forcing func-
tion, and m = a parameter representing a property of the system. Note that for this simple
case there is no independent variable because we are not yet predicting how acceleration
varies in time or space.

Equation (1.3) has several characteristics that are typical of mathematical models of
the physical world:

1. It describes a natural process or system in mathematical terms.

2. It represents an idealization and simplification of reality. That is, the model ignores
negligible details of the natural process and focuses on its essential manifestations.
Thus, the second law does not include the effects of relativity that are of minimal im-
portance when applied to objects and forces that interact on or about the earth’s surface
at velocities and on scales visible to humans.

Finally, it yields reproducible results and, consequently, can be used for predictive
purposes. For example, if the force on an object and the mass of an object are known,
Eq. (1.3) can be used to compute acceleration.

w

Because of its simple algebraic form, the solution of Eqg. (1.2) can be obtained easily.
However, other mathematical models of physical phenomena may be much more complex,
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton’s second law can be used to determine the terminal velocity of a free-falling body
near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A model for this
case can be derived by expressing the acceleration as the time rate of change of the veloc-
ity (dv/dt) and substituting it into Eq. (1.3) to yield

dv F 14

dt ~— m (L4
where v is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of change
of the velocity is equal to the net force acting on the body. If the net force is positive, the
object will accelerate. If it is negative, the object will decelerate. If the net force is zero, the
object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.
For a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two
opposing forces: the downward pull of gravity Fp and the upward force of air resistance Fy:

F=Fo+Fu (1.5)

If the downward force is assigned a positive sign, the second law can be used to for-
mulate the force due to gravity, as

Fo =mg (1.6)

where g = the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.8 m/s?.

14

MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

EXAMPLE 1.1

Air resistance can be formulated in a variety of ways. A simple approach is to assume
that it is linearly proportional to velocity® and acts in an upward direction, as in

FU = —Cv (1-7)

where ¢ = a proportionality constant called the drag coefficient (kg/s). Thus, the greater
the fall velocity, the greater the upward force due to air resistance. The parameter ¢ ac-
counts for properties of the falling object, such as shape or surface roughness, that affect air
resistance. For the present case, ¢ might be a function of the type of jumpsuit or the orien-
tation used by the parachutist during free-fall.

The net force is the difference between the downward and upward force. Therefore,
Egs. (1.4) through (1.7) can be combined to yield

dv mg-—cv

P (1.8)
or simplifying the right side,

dv c

a = g- v (1.9)

Equation (1.9) is a model that relates the acceleration of a falling object to the forces act-
ing on it. It is a differential equation because it is written in terms of the differential rate of
change (dv/dt) of the variable that we are interested in predicting. However, in contrast to
the solution of Newton’s second law in Eq. (1.3), the exact solution of Eq. (1.9) for the ve-
locity of the falling parachutist cannot be obtained using simple algebraic manipulation.
Rather, more advanced techniques such as those of calculus, must be applied to obtain an
exact or analytical solution. For example, if the parachutist is initially at rest (v =0 at
t = 0), calculus can be used to solve Eq. (1.9) for

V(t) = % (1—e~/m) (1.10)

Note that Eq. (1.10) is cast in the general form of Eq. (1.1), where v(t) = the depen-
dent variable, t = the independent variable, ¢ and m = parameters, and g = the forcing
function.

Analytical Solution to the Falling Parachutist Problem

Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot air bal-
loon. Use Eq. (1.10) to compute velocity prior to opening the chute. The drag coefficient is
equal to 12.5 kg/s.

Solution. Inserting the parameters into Eq. (1.10) yields

_9.8(68.1)

v(t) = 158 (1 — e—<12-5/68.1)t) — 53.39(1 _ e—0.18355t)

which can be used to compute

YIn fact, the relationship is actually nonlinear and might better be represented by a power relationship such as
Fu = —cv?. We will explore how such nonlinearities affect the model in a problem at the end of this chapter.

1.1 A SIMPLE MATHEMATICAL MODEL 15

v, m/s

N
®n

0.00
16.40
2777
35.64
41.10
44.87
47 .49
53.39

8OO MNO

According to the model, the parachutist accelerates rapidly (Fig. 1.3). A velocity of
44.87 m/s (100.4 mi/h) is attained after 10 s. Note also that after a sufficiently long time, a
constant velocity, called the terminal velocity, of 53.39 m/s (119.4 mi/h) is reached. This
velocity is constant because, eventually, the force of gravity will be in balance with the air
resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.10) is called an analytical, or exact, solution because it exactly satisfies
the original differential equation. Unfortunately, there are many mathematical models that
cannot be solved exactly. In many of these cases, the only alternative is to develop a nu-
merical solution that approximates the exact solution.

As mentioned previously, numerical methods are those in which the mathematical
problem is reformulated so it can be solved by arithmetic operations. This can be illustrated

FIGURE 1.3

The analytical solution to the
falling parachutist problem as
computed in Example 1.1.
Velocity increases with time and
asymptotically approaches a
ferminal velocity.

Terminal velocity

40 —

Vv, m/s
I

i, S

16 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING
3 V(ti +1) _____________________
True slope i
dv/dt . |
Av o :
|
|
Approximate slope :
‘vit) F--—- £/=V(ti+1)_v(ti) :
' | At -G :
! |
i |
i |
! |
FIGURE 1.4 : '

The use of a finite difference to
approximate the first derivative
of v with respect fo .

for Newton’s second law by realizing that the time rate of change of velocity can be ap-
proximated by (Fig. 1.4):

dv _ Av w(tisg) — ()

g~ 111
dt — At tivg —t (1.11)

where Av and At = differences in velocity and time, respectively, computed over finite in-
tervals, v(tj) = velocity at an initial time t;, and v(tj;1) = velocity at some later time t; ;.
Note thatdv/dt = Av/At is approximate because At is finite. Remember from calculus that

dv . Av
dt aAt—0 At
Equation (1.11) represents the reverse process.
Equation (1.11) is called a finite divided difference approximation of the derivative at
time t;j. It can be substituted into Eq. (1.9) to give

v(tiv1) —v(ti) c
T N g — — (s
G — i J mv(.)
This equation can then be rearranged to yield
c
v(tian) = v(t) + [g = Zv(®)] i —) (112)

Notice that the term in brackets is the right-hand side of the differential equation itself
[Eq. (1.9)]. That is, it provides a means to compute the rate of change or slope of v. Thus,
the differential equation has been transformed into an equation that can be used to deter-
mine the velocity algebraically at tj ; using the slope and previous values of v and t. If you
are given an initial value for velocity at some time t;, you can easily compute velocity at a

1.1 A SIMPLE MATHEMATICAL MODEL 17

EXAMPLE 1.2

later time tj 1. This new value of velocity at tj;; can in turn be employed to extend the
computation to velocity at t;,, and so on. Thus, at any time along the way,

New value = old value + slope x step size

Note that this approach is formally called Euler’s method.

Numerical Solution to the Falling Parachutist Problem

Problem Statement. Perform the same computation as in Example 1.1 but use Eq. (1.12)
to compute the velocity. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (t; = 0), the velocity of the parachutist is zero.
Using this information and the parameter values from Example 1.1, Eq. (1.12) can be used
to compute velocity attj,; = 2s:

125
=22 0y |2 = 19.60 my
68.1")} mes

For the next interval (fromt = 2 to 4 s), the computation is repeated, with the result

v=0+|:9.8—

12.
v =19.60 + |:9.8 - 5(19.60)} 2 =232.00m/s

The calculation is continued in a similar fashion to obtain additional values:

v, m/s

N
®n

0.00
19.60
32.00
39.85
44.82
47.97
49.96
53.39

8OO MNO

The results are plotted in Fig. 1.5 along with the exact solution. It can be seen that the
numerical method captures the essential features of the exact solution. However, because
we have employed straight-line segments to approximate a continuously curving function,
there is some discrepancy between the two results. One way to minimize such discrepan-
cies is to use a smaller step size. For example, applying Eq. (1.12) at I-s intervals results in
a smaller error, as the straight-line segments track closer to the true solution. Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily. Thus, you can accurately model the velocity
of the falling parachutist without having to solve the differential equation exactly.

As in the previous example, a computational price must be paid for a more accurate
numerical result. Each halving of the step size to attain more accuracy leads to a doubling

18 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING
Terminal velocity
| Approximate, numerical solution
40 —
)
E —
= Exact, analytical solution
20 —
FIGURE 1.5 0 ' ' '
0 4 8 12

Comparison of the numerical
and analytical solufions for the
falling parachutist problem.

1.2

of the number of computations. Thus, we see that there is a trade-off between accuracy and
computational effort. Such trade-offs figure prominently in numerical methods and consti-
tute an important theme of this book. Consequently, we have devoted the Epilogue of Part
One to an introduction to more of these trade-offs.

CONSERVATION LAWS AND ENGINEERING

Aside from Newton’s second law, there are other major organizing principles in engineer-
ing. Among the most important of these are the conservation laws. Although they form the
basis for a variety of complicated and powerful mathematical models, the great conserva-
tion laws of science and engineering are conceptually easy to understand. They all boil
down to

Change = increases — decreases (1.13)

This is precisely the format that we employed when using Newton’s law to develop a force
balance for the falling parachutist [Eq. (1.8)].

Although simple, Eq. (1.13) embodies one of the most fundamental ways in which
conservation laws are used in engineering—that is, to predict changes with respect to time.
We give Eq. (1.13) the special name time-variable (or transient) computation.

Aside from predicting changes, another way in which conservation laws are applied is
for cases where change is nonexistent. If change is zero, Eq. (1.13) becomes

Change = 0 = increases — decreases

or

Increases = decreases (1.14)

1.2 CONSERVATION LAWS AND ENGINEERING 19

FIGURE 1.6

A flow balance for steady
incompressible fluid flow at
the junction of pipes.

Pipe 2
Flow in = 80

¥

Pipe 1 Pipe 4
Flow in = 100 == = Flow out = ?

¥

Pipe 3
Flow out = 120

Thus, if no change occurs, the increases and decreases must be in balance. This case, which
is also given a special name—the steady-state computation—has many applications in en-
gineering. For example, for steady-state incompressible fluid flow in pipes, the flow into a
junction must be balanced by flow going out, as in

Flow in = flow out

For the junction in Fig. 1.6, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the falling parachutist, steady-state conditions would correspond to the case where
the net force was zero, or [Eq. (1.8) with dv/dt = 0]

mg = cv (1.15)

Thus, at steady state, the downward and upward forces are in balance, and Eq. (1.15) can
be solved for the terminal velocity

mg
T c

Although Egs. (1.13) and (1.14) might appear trivially simple, they embody the two
fundamental ways that conservation laws are employed in engineering. As such, they will
form an important part of our efforts in subsequent chapters to illustrate the connection be-
tween numerical methods and engineering. Our primary vehicles for making this connec-
tion are the engineering applications that appear at the end of each part of this book.

Table 1.1 summarizes some of the simple engineering models and associated conserva-
tion laws that will form the basis for many of these engineering applications. Most of the
chemical engineering applications will focus on mass balances for reactors. The mass bal-
ance is derived from the conservation of mass. It specifies that the change of mass of a chem-
ical in the reactor depends on the amount of mass flowing in minus the mass flowing out.

Both the civil and mechanical engineering applications will focus on models devel-
oped from the conservation of momentum. For civil engineering, force balances are
utilized to analyze structures such as the simple truss in Table 1.1. The same principles are
employed for the mechanical engineering applications to analyze the transient up-and-
down motion or vibrations of an automobile.

20 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

TABLE 1.1 Devices and types of balances that are commonly used in the four major areas of engineering.
For each case, the conservation law upon which the balance is based is specified.

Field Device

Organizing Principle Mathematical Expression

Chemical engineering

Civil engineering l

Structure

Mechanical engineering

N Machine
s

Electrical engineering

Circuit

Reactors

Conservation of mass Mass balance:

Input JGC» Output

Over a unit of time period
Amass = inputs — outputs

Conservation of Force balance:
momentum +Fy

-F, ~—@®— +F,
-F,

At each node
3 horizontal forces (Fy) =0
3, vertical forces (F,) = 0

Conservation of
momentum

Force balance: Upward force

x=0
Downward force
d’x

m PTa = downward force — upward force

Conservation of charge Current balance:
+i —@— —i

For each node 1
3 current (/) = 0
+1i,
Conservation of energy Voltage balance: i1R,
i2R; 13
i3R3

Around each loop
3 emf’s - X voltage drops for resistors = 0
SE-2iR=0

PROBLEMS

21

TABLE 1.2 Some practical issues that will be explored in the engineering applications
at the end of each part of this book.

1. Nonlinear versus linear. Much of classical engineering depends on linearization to permit analytical
solutions. Although this is often appropriate, expanded insight can often be gained if nonlinear problems

are examined.

2. large versus small systems. Without @ computer, it is often not feasible to examine systems with over three
inferacting components. With computers and numerical methods, more realistic multicomponent systems

can be examined.

3. Nonideal versus ideal. Idealized laws abound in engineering. Often there are nonidealized alternatives
that are more realistic but more computationally demanding. Approximate numerical approaches can
facilitate the application of these nonideal relationships.

4. Sensitivity analysis. Because they are so involved, many manual calculations require a great deal of fime
and effort for successful implementation. This somefimes discourages the analyst from implementing the
multiple computations that are necessary to examine how a system responds under different conditions.
Such sensifivity analyses are facilitated when numerical methods allow the computer to assume the

computational burden.

5. Design. It is often a straightforward proposition to determine the performance of a system as a function of
its parameters. It is usually more difficult fo solve the inverse problem—that is, defermining the parameters
when the required performance is specified. Numerical methods and computers often permit this task to
be implemented in an efficient manner.

Finally, the electrical engineering applications employ both current and energy bal-

ances to model electric circuits. The current balance, which results from the conservation
of charge, is similar in spirit to the flow balance depicted in Fig. 1.6. Just as flow must bal-
ance at the junction of pipes, electric current must balance at the junction of electric wires.
The energy balance specifies that the changes of voltage around any loop of the circuit
must add up to zero. The engineering applications are designed to illustrate how numerical
methods are actually employed in the engineering problem-solving process. As such, they
will permit us to explore practical issues (Table 1.2) that arise in real-world applications.
Making these connections between mathematical techniques such as numerical methods
and engineering practice is a critical step in tapping their true potential. Careful examina-

tion of the engineering applications will help you to take this step.

PROBLEMS

1.1 Use calculus to solve Eq. (1.9) for the case where the initial
velocity, v(0) is nonzero.

1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a
step size of (a) 1 and (b) 0.5 s. Can you make any statement re-
garding the errors of the calculation based on the results?

1.3 Rather than the linear relationship of Eq. (1.7), you might
choose to model the upward force on the parachutist as a second-
order relationship,

FU = —C/v2

where ¢’ = a second-order drag coefficient (kg/m).

(a) Using calculus, obtain the closed-form solution for the case
where the jumper is initially at rest (v = 0 att = 0).

(b) Repeat the numerical calculation in Example 1.2 with the
same initial condition and parameter values. Use a value of
0.225 kg/m for ¢’.

1.4 For the free-falling parachutist with linear drag, assume a first

jumper is 70 kg and has a drag coefficient of 12 kg/s. If a second

jumper has a drag coefficient of 15 kg/s and a mass of 75 kg, how
long will it take him to reach the same velocity the first jumper

reached in 10 s?

1.5 Compute the velocity of a free-falling parachutist using Euler’s

method for the case where m = 80 kg and ¢ = 10 kg/s. Perform the

22 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

calculation fromt = 0 to 20 s with a step size of 1 s. Use an initial
condition that the parachutist has an upward velocity of 20 m/s at
t =0. At t =10 s, assume that the chute is instantaneously de-
ployed so that the drag coefficient jumps to 50 kg/s.

1.6 The amount of a uniformly distributed radioactive contaminant
contained in a closed reactor is measured by its concentration ¢
(becquerel/liter or Bg/L). The contaminant decreases at a decay
rate proportional to its concentration—that is

decay rate = —kc

where k is a constant with units of day—*. Therefore, according to
Eq. (1.13), a mass balance for the reactor can be written as

dc
dt
change \ [decrease
(in mass) N <by decay>
(a) Use Euler’s method to solve this equation fromt =0to 1 d
with k = 0.2d~1. Employ a step size of At =0.1. The con-
centration att = 0 is 10 Bg/L.
(b) Plot the solution on a semilog graph (i.e., In ¢ versus t) and de-
termine the slope. Interpret your results.
1.7 A storage tank contains a liquid at depth y where y = 0 when
the tank is half full. Liquid is withdrawn at a constant flow rate Q

to meet demands. The contents are resupplied at a sinusoidal rate
3Q sin?(t).

= —kc

Figure P1.7

Equation (1.13) can be written for this system as
d(Ay)
dx

<change|”) = (inflow) — (outflow)
volume

=3Qsin’t)— Q

or, since the surface area A is constant

4y _3Qqn2p_ 2
d—X_3Asm(t) A

Use Euler’s method to solve for the depth y fromt = 0 to 10 d with
a step size of 0.5 d. The parameter values are A = 1200 m? and
Q = 500 m%/d. Assume that the initial condition is y = 0.
1.8 For the same storage tank described in Prob. 1.7, suppose that
the outflow is not constant but rather depends on the depth. For this
case, the differential equation for depth can be written as

dy Q.» al+ e

— =3—sin“(t) - ———

ax ~ oA A
Use Euler’s method to solve for the depth y from t = 0 to 10 d with
a step size of 0.5d. The parameter values are A = 1200 m?,
Q =500 m¥d, and « = 300. Assume that the initial condition is
y =0.
1.9 The volume flow rate through a pipe is given by Q = vA,
where v is the average velocity and A is the cross-sectional area.
Use volume-continuity to solve for the required area in pipe 3.

= Qou=20m?s

Qu,in = 40 M%/s =l

U304t = 6 M/S
A;=7?

Figure P1.9

1.10 Agroup of 35 students attend a class in a room that measures
10 m by 8 m by 3 m. Each student takes up about 0.075 m® and
gives out about 80 W of heat (1 W = 1 J/s). Calculate the air tem-
perature rise during the first 15 minutes of the class if the room is
completely sealed and insulated. Assume the heat capacity, C,, for
air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20°C and
101.325 kPa. Note that the heat absorbed by the air Q is related to
the mass of the air m, the heat capacity, and the change in tempera-
ture by the following relationship:

T2
Q = m/ C,dT = mC,(Ty — Ty)
T

1

The mass of air can be obtained from the ideal gas law:

PV = M RT
Mt

PROBLEMS

23

where P is the gas pressure, V is the volume of the gas, Mwt is the
molecular weight of the gas (for air, 28.97 kg/kmol), and R is the
ideal gas constant [8.314 kPa m%(kmol K)].

1.11 Figure P1.11 depicts the various ways in which an average
man gains and loses water in one day. One liter is ingested as food,
and the body metabolically produces 0.3 L. In breathing air, the ex-
change is 0.05 L while inhaling, and 0.4 L while exhaling over a
one-day period. The body will also lose 0.2, 1.4, 0.2, and 0.35 L
through sweat, urine, feces, and through the skin, respectively. In
order to maintain steady-state condition, how much water must be
drunk per day?

Skin

Urine[‘]Feces

«— Air

Food —
BODY

L)

Metabolism

Drink —* — Sweat

Figure P1.11

1.12 In our example of the free-falling parachutist, we assumed
that the acceleration due to gravity was a constant value of 9.8 m/s?.
Although this is a decent approximation when we are examining
falling objects near the surface of the earth, the gravitational force
decreases as we move above sea level. A more general representa-
tion based on Newton’s inverse square law of gravitational attrac-
tion can be written as

2

mm-gmhR+m2

where g(x) = gravitational acceleration at altitude x (in m) mea-

sured upwards from the earth’s surface (m/s?), g(0) = gravitational
acceleration at the earth’s surface (= 9.8 m/s?), and R = the earth’s

radius (= 6.37 x 10%m).

(a) In a fashion similar to the derivation of Eq. (1.9) use a force
balance to derive a differential equation for velocity as a func-
tion of time that utilizes this more complete representation of
gravitation. However, for this derivation, assume that upward
velocity is positive.

(b) For the case where drag is negligible, use the chain rule to ex-
press the differential equation as a function of altitude rather
than time. Recall that the chain rule is

dv dvdx

dt ~ dx dt

(c) Use calculus to obtain the closed form solution where v = v at
x =0.

(d) Use Euler’s method to obtain a numerical solution from x = 0
to 100,000 m using a step of 10,000 m where the initial veloc-
ity is 1400 m/s upwards. Compare your result with the analyti-
cal solution.

1.13 Suppose that a spherical droplet of liquid evaporates at a rate

that is proportional to its surface area.

e kA
where V = volume (mm?®), t = time (min), k = the evaporation rate
(mm/min), and A = surface area (mm?). Use Euler’s method to
compute the volume of the droplet from t =0 to 10 min using a
step size of 0.25 min. Assume that k = 0.1 mm/min and that the
droplet initially has a radius of 3 mm. Assess the validity of your re-
sults by determining the radius of your final computed volume and
verifying that it is consistent with the evaporation rate.

1.14 Newton’s law of cooling says that the temperature of a body
changes at a rate proportional to the difference between its tempera-
ture and that of the surrounding medium (the ambient temperature),

dT
G K(T —Ta)

where T = the temperature of the body (°C), t = time (min), k = the
proportionality constant (per minute), and T, = the ambient tem-
perature (°C). Suppose that a cup of coffee originally has a temper-
ature of 68°C. Use Euler’s method to compute the temperature
from t = 0 to 10 min using a step size of 1 min if T, =21°Cand k =
0.1/min.

1.15 Water accounts for roughly 60% of total body weight. As-
suming it can be categorized into six regions, the percentages go as
follows. Plasma claims 4.5% of the body weight and is 7.5% of the
total body water. Dense connective tissue and cartilage occupies
4.5% of the total body weight and 7.5% of the total body water. In-
terstitial lymph is 12% of the body weight, which is 20% of the
total body water. Inaccessible bone water is roughly 7.5% of the
total body water and 4.5% total body weight. If intracellular water
is 33% of the total body weight and transcellular water is 2.5% of
the total body water, what percent of total body weight must the
transcellular water be and what percent of total body water must the
intracellular water be?

24 MATHEMATICAL MODELING AND ENGINEERING PROBLEM SOLVING

1.16 Cancer cells grow exponentially with a doubling time of 20 h
when they have an unlimited nutrient supply. However, as the cells
start to form a solid spherical tumor without a blood supply, growth
at the center of the tumor becomes limited, and eventually cells
start to die.

(a) Exponential growth of cell number N can be expressed as
shown, where 1 is the growth rate of the cells. For cancer cells,
find the value of .
dN

at —#N

(b) Write an equation that will describe the rate of change of tumor
volume during exponential growth given that the diameter of
an individual cell is 20 microns.

(c) After a particular type of tumor exceeds 500 microns in diam-
eter, the cells at the center of the tumor die (but continue to take
up space in the tumor). Determine how long it will take for the
tumor to exceed this critical size.

1.17 A fluid is pumped into the network shown in Fig. P1.17. If

Q, =0.7, Q3 = 0.5, Q; = 0.1, and Qg = 0.3 m®/s, determine the

other flows.

——
—-

Q, Qs Qs

oA oy

92 Qg Qs

e

Figure P1.17

1.18 The following information is available for a bank account:

Date Deposits Withdrawals Interest Balance
5/1 1512.33
220.13 327.26
6/1
216.80 378.61
7/1
450.25 106.80
8/1
127.31 350.61

Q/1

Note that the money earns interest which is computed as
Interest = i B;

where i = the interest rate expressed as a fraction per month, and

B; the initial balance at the beginning of the month.

(a) Use the conservation of cash to compute the balance on 6/1,
7/1, 8/1, and 9/1 if the interest rate is 1% per month (i =
0.01/month). Show each step in the computation.

(b) Write a differential equation for the cash balance in the form

dB .

at = f(D(), W(t), 1)
where t = time (months), D(t) = deposits as a function of
time ($/month), W (t) = withdrawals as a function of time
($/month). For this case, assume that interest is compounded
continuously; that is, interest=iB.

(c) Use Euler’s method with a time step of 0.5 month to simulate
the balance. Assume that the deposits and withdrawals are ap-
plied uniformly over the month.

(d) Develop a plot of balance versus time for (a) and (c).

1.19 The velocity is equal to the rate of change of distance x (m),

d—i[(=v(t)

] (P1.19)

(a) Substitute Eq. (1.10) and develop an analytical solution for dis-
tance as a function of time. Assume thatx (0) = 0.

(b) Use Euler’s method to numerically integrate Egs. (P1.19) and
(1.9) in order to determine both the velocity and distance fallen
as a function of time for the first 10 s of free fall using the same
parameters as in Example 1.2.

(c) Develop a plot of your numerical results together with the
analytical solutions.

CHAPTER

2.1

Programming and Software

In Chap. 1, we used a net force to develop a mathematical model to predict the fall velocity
of a parachutist. This model took the form of a differential equation,

dv c

-~y

dt g m
We also learned that a solution to this equation could be obtained by a simple numerical
approach called Euler’s method,

dvi

At
dt

Vit1 = Vi +

Given an initial condition, this equation can be implemented repeatedly to compute the
velocity as a function of time. However, to obtain good accuracy, many small steps must be
taken. This would be extremely laborious and time-consuming to implement by hand.
However, with the aid of the computer, such calculations can be performed easily.

So our next task is to figure out how to do this. The present chapter will introduce you
to how the computer is used as a tool to obtain such solutions.

PACKAGES AND PROGRAMMING

Today, there are two types of software users. On one hand, there are those who take what
they are given. That is, they limit themselves to the capabilities found in the software’s
standard mode of operation. For example, it is a straightforward proposition to solve a sys-
tem of linear equations or to generate of plot of x-y values with either Excel or MATLAB
software. Because this usually involves a minimum of effort, most users tend to adopt this
“vanilla” mode of operation. In addition, since the designers of these packages anticipate
most typical user needs, many meaningful problems can be solved in this way.

But what happens when problems arise that are beyond the standard capability of the
tool? Unfortunately, throwing up your hands and saying, “Sorry boss, no can do!” is not
acceptable in most engineering circles. In such cases, you have two alternatives.

First, you can look for a different package and see if it is capable of solving the prob-
lem. That is one of the reasons we have chosen to cover both Excel and MATLAB in this
book. As you will see, neither one is all encompassing and each has different strengths.

25

26

PROGRAMMING AND SOFTWARE

2.2

By being conversant with both, you will greatly increase the range of problems you can
address.

Second, you can grow and become a “power user” by learning to write Excel VBA?!
macros or MATLAB M-files. And what are these? They are nothing more than computer
programs that allow you to extend the capabilities of these tools. Because engineers should
never be content to be tool limited, they will do whatever is necessary to solve their prob-
lems. A powerful way to do this is to learn to write programs in the Excel and MATLAB en-
vironments. Furthermore, the programming skills required for macros and M-files are the
same as those needed to effectively develop programs in languages like Fortran 90 or C.

The major goal of the present chapter is to show you how this can be done. However,
we do assume that you have been exposed to the rudiments of computer programming.
Therefore, our emphasis here is on facets of programming that directly affect its use in
engineering problem solving.

2.1.1 Computer Programs

Computer programs are merely a set of instructions that direct the computer to perform a
certain task. Since many individuals write programs for a broad range of applications, most
high-level computer languages, like Fortran 90 and C, have rich capabilities. Although
some engineers might need to tap the full range of these capabilities, most merely require
the ability to perform engineering-oriented numerical calculations.

Looked at from this perspective, we can narrow down the complexity to a few pro-
gramming topics. These are:

e Simple information representation (constants, variables, and type declarations).
e Advanced information representation (data structure, arrays, and records).

e Mathematical formulas (assignment, priority rules, and intrinsic functions).

e Input/output.

e Logical representation (sequence, selection, and repetition).

e Modular programming (functions and subroutines).

Because we assume that you have had some prior exposure to programming, we will
not spend time on the first four of these areas. At best, we offer them as a checklist that cov-
ers what you will need to know to implement the programs that follow.

However, we will devote some time to the last two topics. We emphasize logical rep-
resentation because it is the single area that most influences an algorithm’s coherence and
understandability. We include modular programming because it also contributes greatly to
a program’s organization. In addition, modules provide a means to archive useful algo-
rithms in a convenient format for subsequent applications.

STRUCTURED PROGRAMMING

In the early days of computer, programmers usually did not pay much attention to whether
their programs were clear and easy to understand. Today, it is recognized that there are
many benefits to writing organized, well-structured code. Aside from the obvious benefit
of making software much easier to share, it also helps generate much more efficient

WBA is the acronym for Visual Basic for Applications.

2.2 STRUCTURED PROGRAMMING 27

program development. That is, well-structured algorithms are invariably easier to debug
and test, resulting in programs that take a shorter time to develop, test, and update.

Computer scientists have systematically studied the factors and procedures needed to
develop high-quality software of this kind. In essence, structured programming is a set of
rules that prescribe good style habits for the programmer. Although structured program-
ming is flexible enough to allow considerable creativity and personal expression, its rules
impose enough constraints to render the resulting codes far superior to unstructured ver-
sions. In particular, the finished product is more elegant and easier to understand.

A key idea behind structured programming is that any numerical algorithm can be
composed using the three fundamental control structures: sequence, selection, and repeti-
tion. By limiting ourselves to these structures, the resulting computer code will be clearer
and easier to follow.

In the following paragraphs, we will describe each of these structures. To keep this de-
scription generic, we will employ flowcharts and pseudocode. A flowchart is a visual or
graphical representation of an algorithm. The flowchart employs a series of blocks and ar-
rows, each of which represents a particular operation or step in the algorithm (Fig. 2.1).
The arrows represent the sequence in which the operations are implemented.

Not everyone involved with computer programming agrees that flowcharting is a pro-
ductive endeavor. In fact, some experienced programmers do not advocate flowcharts.
However, we feel that there are three good reasons for studying them. First, they are still
used for expressing and communicating algorithms. Second, even if they are not employed
routinely, there will be times when they will prove useful in planning, unraveling, or com-
municating the logic of your own or someone else’s program. Finally, and most important
for our purposes, they are excellent pedagogical tools. From a teaching perspective, they

FIGURE 2.1

Symbols used in flowcharts.

SYMBOL

@D
A

-
<@
©
u
a

NAME

Terminal

Flowlines

Process

Input/output

Decision

Junction

Off-page
connector

Count-controlled
loop

FUNCTION

Represents the beginning or end of a program.

Represents the flow of logic. The humps on the horizontal arrow indicate that
it passes over and does not connect with the vertical flowlines.

Represents calculations or data manipulations.

Represents inputs or outputs of data and information.

Represents a comparison, question, or decision that determines alternative
paths to be followed.

Represents the confluence of flowlines.

Represents a break that is continued on another page.

Used for loops which repeat a prespecified number of iterations.

28

PROGRAMMING AND SOFTWARE

are ideal vehicles for visualizing some of the fundamental control structures employed in
computer programming.

An alternative approach to express an algorithm that bridges the gap between flow-
charts and computer code is called pseudocode. This technique uses code-like statements
in place of the graphical symbols of the flowchart. We have adopted some style conven-
tions for the pseudocode in this book. Keywords such as IF, DO, INPUT, etc., are capital-
ized, whereas the conditions, processing steps, and tasks are in lowercase. Additionally, the
processing steps are indented. Thus the keywords form a “sandwich” around the steps to
visually define the extent of each control structure.

One advantage of pseudocode is that it is easier to develop a program with it than
with a flowchart. The pseudocode is also easier to modify and share with others. However,
because of their graphic form, flowcharts sometimes are better suited for visualizing com-
plex algorithms. In the present text, we will use flowcharts for pedagogical purposes.
Pseudocode will be our principal vehicle for communicating algorithms related to numeri-
cal methods.

2.2.1 Logical Representation

Sequence. The sequence structure expresses the trivial idea that unless you direct it oth-
erwise, the computer code is to be implemented one instruction at a time. As in Fig. 2.2, the
structure can be expressed generically as a flowchart or as pseudocode.

Selection. In contrast to the step-by-step sequence structure, selection provides a
means to split the program’s flow into branches based on the outcome of a logical condi-
tion. Figure 2.3 shows the two most fundamental ways for doing this.

The single-alternative decision, or IF/THEN structure (Fig. 2.3a), allows for a detour
in the program flow if a logical condition is true. If it is false, nothing happens and the pro-
gram moves directly to the next statement following the ENDIF. The double-alternative de-
cision, or IF/THEN/ELSE structure (Fig. 2.3b), behaves in the same manner for a true con-
dition. However, if the condition is false, the program implements the code between the
ELSE and the ENDIF.

FIGURE 2.2

(a) Flowchart and

[b) pseudocode for the
sequence structure.

Instruction,
Instruction, Instruction;
; Instruction,
Instructiony
Instruction, Instruction,
Instruction,

(a) Flowchart (b) Pseudocode

2.2 STRUCTURED PROGRAMMING 29

FIGURE 2.3

Flowchart and pseudocode for
simple selection constructs.

[a) Single-alternative selection
(IF/THEN) and (b) double-
alternative selection

(IF/THEN/ELSE).

Flowchart Pseudocode

Condition
?

IF condition THEN
True block
ENDIF

A 4

True Block

(a) Single-alternative structure (IF/THEN)
IF condition THEN

?
. True block

A 4 A / ELSE

False Block True Block False block
I I ENDIF

-

(b) Double-alternative structure (IF/THEN/ELSE)

Although the IF/THEN and the IF/THEN/ELSE constructs are sufficient to construct
any numerical algorithm, two other variants are commonly used. Suppose that the ELSE
clause of an IF/THEN/ELSE contains another IF/THEN. For such cases, the ELSE and the
IF can be combined in the IF/THEN/ELSEIF structure shown in Fig. 2.4a.

Notice how in Fig. 2.4a there is a chain or “cascade” of decisions. The first one is the
IF statement, and each successive decision is an ELSEIF statement. Going down the chain,
the first condition encountered that tests true will cause a branch to its corresponding code
block followed by an exit of the structure. At the end of the chain of conditions, if all the
conditions have tested false, an optional ELSE block can be included.

The CASE structure is a variant on this type of decision making (Fig. 2.4b). Rather
than testing individual conditions, the branching is based on the value of a single test
expression. Depending on its value, different blocks of code will be implemented. In
addition, an optional block can be implemented if the expression takes on none of the
prescribed values (CASE ELSE).

Repetfition. Repetition provides a means to implement instructions repeatedly. The
resulting constructs, called loops, come in two “flavors” distinguished by how they are
terminated.

30

PROGRAMMING AND SOFTWARE

Flowchart Pseudocode

IF condition; THEN
Block;

ELSEIF condition,
Block,

ELSEIF conditions
Block;

ELSE
Block,

ENDIF

(a) Multialternative structure (IF/THEN/ELSEIF)

SELECT CASE Test Expression
CASE Value;
Block;
CASE Value,
Block,

Value,

CASE Values

Value, Value, Else

Block;,

Blocky

Block, Block, Block, CASE ELSE
Blocky,

| | | END SELECT

FIGURE 2.4

(b) CASE structure (SELECT or SWITCH)

Flowchart and pseudocode for supplementary selection or branching consfructs. (a) Multiple-
alternative selection (IF/THEN /ELSEIF) and (b) CASE construct.

The first and most fundamental type is called a decision loop because it terminates
based on the result of a logical condition. Figure 2.5 shows the most generic type of deci-
sion loop, the DOEXIT construct, also called a break loop. This structure repeats until a
logical condition is true.

It is not necessary to have two blocks in this structure. If the first block is not included,
the structure is sometimes called a pretest loop because the logical test is performed before
anything occurs. Alternatively, if the second block is omitted, it is called a posttest loop.

2.2 STRUCTURED PROGRAMMING 31

Flowchart Pseudocode

DO
Block;
IF condition EXIT
Block,
ENDDO
FIGURE 2.5
The DOEXIT or break loop.
Flowchart Pseudocode
True -~ . i=start
i > finish
, -
y 1=1+step DOFOR i = start, finish, step
False Block
ENDDO
v
FIGURE 2.6 Block
The countcontrolled or DOFOR \ [

consfruct.

Because both blocks are included, the general case in Fig. 2.5 is sometimes called a midtest
loop.

It should be noted that the DOEXIT loop was introduced in Fortran 90 in an effort to
simplify decision loops. This control construct is a standard part of the Excel VBA macro
language but is not standard in C or MATLAB, which use the so-called WHILE structure.
Because we believe that the DOEXIT is superior, we have adopted it as our decision loop
structure throughout this book. In order to ensure that our algorithms are directly imple-
mented in both MATLAB and Excel, we will show how the break loop can be simulated
with the WHILE structure later in this chapter (see Sec. 2.5).

The break loop in Fig. 2.5 is called a logical loop because it terminates on a logical
condition. In contrast, a count-controlled or DOFOR loop (Fig. 2.6) performs a specified
number of repetitions, or iterations.

The count-controlled loop works as follows. The index (represented as i in Fig. 2.6) is
a variable that is set at an initial value of start. The program then tests whether the index is

32

PROGRAMMING AND SOFTWARE

EXAMPLE 2.1

less than or equal to the final value, finish. If so, it executes the body of the loop, and then
cycles back to the DO statement. Every time the ENDDO statement is encountered, the
index is automatically increased by the step. Thus the index acts as a counter. Then, when
the index is greater than the final value (finish), the computer automatically exits the loop
and transfers control to the line following the ENDDO statement. Note that for nearly all
computer languages, including those of Excel and MATLAB, if the step is omitted, the
computer assumes it is equal to 1.2

The numerical algorithms outlined in the following pages will be developed exclu-
sively from the structures outlined in Figs. 2.2 through 2.6. The following example
illustrates the basic approach by developing an algorithm to determine the roots for the
quadratic formula.

Algorithm for Roots of a Quadratic
Problem Statement. The roots of a quadratic equation

ax’+bx+c=0

can be determined with the quadratic formula,

X1 —b4/[b? —dac|
B 2a

X2

(E2.1.1)
Develop an algorithm that does the following:

Step 1: Prompts the user for the coefficients, a, b, and c.

Step 2: Implements the quadratic formula, guarding against all eventudlities (for example, avoiding
division by zero and allowing for complex roots).

Step 3: Displays the solution, that is, the values for x.

Step 4: Allows the user the option to retum to step 1 and repeat the process.

Solution. We will use a top-down approach to develop our algorithm. That is, we will
successively refine the algorithm rather than trying to work out all the details the first time
around.

To do this, let us assume for the present that the quadratic formula is foolproof
regardless of the values of the coefficients (obviously not true, but good enough for now).
A structured algorithm to implement the scheme is

Do
INPUT a, b, c
rl = (—b + SQRT(b? — 4ac))/(2a)
r2 = (—b — SQRT(b? — 4ac))/(2a)
DISPLAY r1, r2
DISPLAY 'Try again? Answer yes or no'
INPUT response
IF response = 'no" EXIT
ENDDO

2/ negative step can be used. In such cases, the loop terminates when the index is less than the final value.

2.2 STRUCTURED PROGRAMMING 33

A DOEXIT construct is used to implement the quadratic formula repeatedly as long
as the condition is false. The condition depends on the value of the character variable
response. If response is equal to ‘yes’ the calculation is implemented. If not, that is,
response = ‘no’ the loop terminates. Thus, the user controls termination by inputting a
value for response.

Now although the above algorithm works for certain cases, it is not foolproof. Depend-
ing on the values of the coefficients, the algorithm might not work. Here is what can happen:

e If a=0, an immediate problem arises because of division by zero. In fact, close
inspection of Eq. (E2.1.1) indicates that two different cases can arise. That is,
If b # 0, the equation reduces to a linear equation with one real root, —c/b.
If b = 0, then no solution exists. That is, the problem is trivial.
e If a#0, two possible cases occur depending on the value of the discriminant,
d = b? — 4ac. That is,
If d > 0, two real roots occur.
Ifd < 0, two complex roots occur.

Notice how we have used indentation to highlight the decisional structure that
underlies the mathematics. This structure then readily translates to a set of coupled
IF/THEN/ELSE structures that can be inserted in place of the shaded statements in the pre-
vious code to give the final algorithm:

Do
INPUT a, b, ¢
ri = 0: r2 = 0: il = 0: i2= 0
IF a = 0 THEN
IF b # 0 THEN
rli = —c/b
ELSE
DISPLAY "Trivial solution"”
ENDIF
ELSE

discr = b2 — 4 *a * ¢

IF discr = 0 THEN
rl = (=b +Sqrt(discr))/ (2 * a)
r?2 = (=b — Sgrt(discr))/ (2 * a)

ELSE
rl = —=b/ (2 * a)
r? = ri

il = Sqrt(Abs(discr))/ (2 * a)
i2=—7il
ENDIF

ENDIF

DISPLAY rl, r2, i1, i2

DISPLAY 'Try again? Answer yes or no'

INPUT response

IF response = 'no" EXIT

ENDDO

34

PROGRAMMING AND SOFTWARE

The approach in the foregoing example can be employed to develop an algorithm for
the parachutist problem. Recall that, given an initial condition for time and velocity, the
problem involved iteratively solving the formula

LY @1
Vj = Vj —_— .
i+1 1 dt
Now also remember that if we desired to attain good accuracy, we would need to employ
small steps. Therefore, we would probably want to apply the formula repeatedly from the
initial time to the final time. Consequently, an algorithm to solve the problem would be
based on a loop.

For example, suppose that we started the computation at t = 0 and wanted to predict

the velocity att = 4 s using a time step of At = 0.5 s. We would, therefore, need to apply
Eq. (2.1) eight times, that is,
— 4 —
05
where n = the number of iterations of the loop. Because this result is exact, that is, the ratio
is an integer, we can use a count-controlled loop as the basis for the algorithm. Here is an
example of the pseudocode:

n 8

g= 9.8

INPUT cd, m

INPUT t7, vi, tf, dt

t=ti

v =vi

n=(tf—-ti)/ dt

DOFOR i = 1 T0 n
dvdt = g — (cd / m) *v
v =v + dvdt * dt
t=t+ dt

ENDDO

DISPLAY v

Although this scheme is simple to program, it is not foolproof. In particular, it will
work only if the computation interval is evenly divisible by the time step. In order to cover
such cases, a decision loop can be substituted in place of the shaded area in the previous
pseudocode. The final result is

g=9.8

INPUT cd, m

INPUT ti7, vi, tf, dt
t=ti

v =vi

3This problem is compounded by the fact that computers use base-2 number representation for their internal math.
Consequently, some apparently evenly divisible numbers do not yield integers when the division is implemented
on a computer. We will cover this in Chap. 3.

2.3 MODULAR PROGRAMMING 35

2.3

h = dt
DO
IF t + dt > tf THEN
h=1tf-1¢
ENDIF

dvdt = g —(cd / m) *v
v=v+ dvdt * h
t=t+ h
IF t = tf EXIT

ENDDO

DISPLAY v

As soon as we enter the loop, we use an IF/THEN structure to test whether adding
t + dt will take us beyond the end of the interval. If it does not, which would usually be the
case at first, we do nothing. If it does, we would need to shorten the interval by setting the
variable step hto tf — t. By doing this, we guarantee that the next step falls exactly on tf.
After we implement this final step, the loop will terminate because the condition t > tf
will test true.

Notice that before entering the loop, we assign the value of the time step, dt, to another
variable, h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code is integrated
within a larger program.

It should be noted that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a step size greater than the calculation interval, for example,
tf —ti = 5anddt = 20. Thus, you might want to include error traps in your code to catch
such errors and to then allow the user to correct the mistake.

MODULAR PROGRAMMING

Imagine how difficult it would be to study a textbook that had no chapters, sections, or
paragraphs. Breaking complicated tasks or subjects into more manageable parts is one way
to make them easier to handle. In the same spirit, computer programs can be divided into
small subprograms, or modules, that can be developed and tested separately. This approach
is called modular programming.

The most important attribute of modules is that they be as independent and self-
contained as possible. In addition, they are typically designed to perform a specific, well-
defined function and have one entry and one exit point. As such, they are usually short
(generally 50 to 100 instructions in length) and highly focused.

In standard high-level languages such as Fortran 90 or C, the primary programming
element used to represent each module is the procedure. A procedure is a series of computer
instructions that together perform a given task. Two types of procedures are commonly
employed: functions and subroutines. The former usually returns a single result, whereas the
latter returns several.

In addition, it should be mentioned that much of the programming related to software
packages like Excel and MATLAB involves the development of subprograms. Hence,

36

PROGRAMMING AND SOFTWARE

Excel macros and MATLAB functions are designed to receive some information, perform
a calculation, and return results. Thus, modular thinking is also consistent with how pro-
gramming is implemented in package environments.

Modular programming has a number of advantages. The use of small, self-contained
units makes the underlying logic easier to devise and to understand for both the developer
and the user. Development is facilitated because each module can be perfected in isolation.
In fact, for large projects, different programmers can work on individual parts. Modular de-
sign also increases the ease with which a program can be debugged and tested because errors
can be more easily isolated. Finally, program maintenance and modification are facilitated.
This is primarily due to the fact that new modules can be developed to perform additional
tasks and then easily incorporated into the already coherent and organized scheme.

While all these attributes are reason enough to use modules, the most important reason
related to numerical engineering problem solving is that they allow you to maintain your
own library of useful modules for later use in other programs. This will be the philosophy
of this book: All the algorithms will be presented as modules.

This approach is illustrated in Fig. 2.7 which shows a function developed to imple-
ment Euler’s method. Notice that this function application and the previous versions differ
in how they handle input/output. In the former versions, input and output directly come
from (via INPUT statements) and to (via DISPLAY statements) the user. In the function,
the inputs are passed into the FUNCTION via its argument list

Function Euler(dt, ti, tf, yi)
and the output is returned via the assignment statement
y = Euler(dt, ti, tf, yi)

In addition, recognize how generic the routine has become. There are no references to
the specifics of the parachutist problem. For example, rather than calling the dependent

FIGURE 2.7
Pseudocode for a function that
solves a differential equation
using Euler's method.

FUNCTION Euler(dt, ti, tf, yi)

t=ti
y=yi
h = dt
D0
IF t + dt >tf THEN
h=tf-t
ENDIF

dydt = dy(t, y)
y =y + dydt * h

t=t+ h

IF t = tf EXIT
ENDDO
Euler = y

END

2.4 EXCEL 37

24

variable v for velocity, the more generic label, y, is used within the function. Further, notice
that the derivative is not computed within the function by an explicit equation. Rather, another
function, dy, must be invoked to compute it. This acknowledges the fact that we might want
to use this function for many different problems beyond solving for the parachutist’s velocity.

EXCEL

Excel is the spreadsheet produced by Microsoft, Inc. Spreadsheets are a special type of
mathematical software that allow the user to enter and perform calculations on rows and
columns of data. As such, they are a computerized version of a large accounting worksheet
on which large interconnected calculations can be implemented and displayed. Because the
entire calculation is updated when any value on the sheet is changed, spreadsheets are ideal
for “what if?” sorts of analysis.

Excel has some built-in numerical capabilities including equation solving, curve fit-
ting, and optimization. It also includes VBA as a macro language that can be used to im-
plement numerical calculations. Finally, it has several visualization tools, such as graphs
and three-dimensional surface plots, that serve as valuable adjuncts for numerical analysis.
In the present section, we will show how these capabilities can be used to solve the para-
chutist problem.

To do this, let us first set up a simple spreadsheet. As shown below, the first step in-
volves entering labels and numbers into the spreadsheet cells.

A B | C | D |
1 |Parachutist Prohlem
2
d |m 68.1 kg
4 cd 12.59 kg's
5 |dt 0.1s
5
L vhum (m/s) vanal (m/g)
5] 0 0.000
g 2

Before we write a macro program to calculate the numerical value, we can make our
subsequent work easier by attaching names to the parameter values. To do this, select cells
A3:B5 (the easiest way to do this is by moving the mouse to A3, holding down the left
mouse button and dragging down to B5). Next, make the menu selection

Insert Name Create Left column OK

To verify that this has worked properly, select cell B3 and check that the label “m” appears
in the name box (located on the left side of the sheet just below the menu bars).
Move to cell C8 and enter the analytical solution (Eg. 1.9),

=9.8*m/cd*(1-exp(-cd/m*A8))

When this formula is entered, the value 0 should appear in cell C8. Then copy the formula
down to cell C9 to give a value of 16.405 m/s.

All the above is typical of the standard use of Excel. For example, at this point you
could change parameter values and see how the analytical solution changes.

38

PROGRAMMING AND SOFTWARE

Now, we will illustrate how VBA macros can be used to extend the standard capabili-
ties. Figure 2.8 lists pseudocode alongside Excel VBA code for all the control structures
described in the previous section (Figs. 2.2 through 2.6). Notice how, although the details
differ, the structure of the pseudocode and the VBA code are identical.

We can now use some of the constructs from Fig. 2.8 to write a macro function to
numerically compute velocity. Open VBA by selecting*

Tools Macro Visual Basic Editor
Once inside the Visual Basic Editor (VBE), select
Insert Module

and a new code window will open up. The following VBA function can be developed
directly from the pseudocode in Fig. 2.7. Type it into the code window.

Option Explicit

Function Euler(dt, ti, tf, yi, m, cd)
Dim h As Double, t As Double, y As Double, dydt As Double

t = ti
y =Yyl
h = dt
Do
If t + dt > tf Then
h=tfF -t
End If
dydt = dy(t, y, m, cd)
y =y + dydt * h
t=t+h
If t >= tF Then Exit Do
Loop
Euler = y

End Function

Compare this macro with the pseudocode from Fig. 2.7 and recognize how similar they
are. Also, see how we have expanded the function’s argument list to include the necessary
parameters for the parachutist velocity model. The resulting velocity, v, is then passed back
to the spreadsheet via the function name.

Also notice how we have included another function to compute the derivative. This
can be entered in the same module by typing it directly below the Euler function,

Function dy(t, v, m, cd)
Const g As Double = 9.8
dy =g —-(cd / m) * v
End Function

4The hot key combination Alt-F11 is even quicker!

FIGURE 2.8
The fundamental control
structures in [a) pseudocode

and (b) Excel VBA.

(a) Pseudocode

(b) Excel VBA

IF/THEN:
IF condition THEN IT b <> 0 Then
True block rl=-c /b
ENDIF End If
IF/THEN/ELSE:
IF condition THEN If a <0 Then
True block b = Sqgr(Abs(a))
ELSE Else
False block b = Sqgr(a)
ENDIF End If

IF/ THEN/ELSEIF:
IF condition; THEN

If class = 1 Then

Block; X =X + 8

ELSEIF condition, Elself class < 1 Then
Block, X =X—-—8

ELSEIF conditions Elself class < 10 Then
Blocks X =X — 32

ELSE Else
Blocky X = X — 64

ENDIF End If

CASE:

SELECT CASE Test Expression
CASE Value;

Select Case a + b
Case Is < -50

Block; X = -5
CASE Value, Case Is < 0
Block; x=-5—-(Ca+b) /710
CASE Values Case Is < 50
Blocks x = (a+b) /710
CASE ELSE Case Else
Blocky x =5
END SELECT End Select
DOEXIT:
Do Do
Block; i=1+1
IF condition EXIT If 1 >= 10 Then Exit Do
Block; J = 1*x
ENDDO Loop

COUNT-CONTROLLED LOOP:

DOFOR 1 = start, finish, step
Block

ENDDO

For i = 1 To 10 Step 2
= + 1

39

40

PROGRAMMING AND SOFTWARE

The final step is to return to the spreadsheet and invoke the function by entering the
following formula in cell B9

=Euler(dt,A8,A9,B8,m,cd)

The result of the numerical integration, 16.531, will appear in cell B9.

You should appreciate what has happened here. When you enter the function into the
spreadsheet cell, the parameters are passed into the VBA program where the calculation is
performed and the result is then passed back and displayed in the cell. In effect, the VBA
macro language allows you to use Excel as your input/output mechanism. All sorts of ben-
efits arise from this fact.

For example, now that you have set up the calculation, you can play with it. Suppose that
the jumper was much heavier, say, m = 100 kg (about 220 pounds). Enter 100 into cell B3
and the spreadsheet will update immediately to show a value of 17.438 in cell B9. Change
the mass back to 68.1 kg and the previous result, 16.531, automatically reappears in cell B9.

Now let us take the process one step further by filling in some additional numbers for
the time. Enter the numbers 4, 6, . . . 16 in cells A10 through A16. Then copy the formu-
las from cells B9:C9 down to rows 10 through 16. Notice how the VBA program calcu-
lates the numerical result correctly for each new row. (To verify this, change dt to 2 and
compare with the results previously computed by hand in Example 1.2.) An additional em-
bellishment would be to develop an x-y plot of the results using the Excel Chart Wizard.

The final spreadsheet is shown below. We now have created a pretty nice problem-
solving tool. You can perform sensitivity analyses by changing the values for each of
the parameters. As each new value is entered, the computation and the graph would be
automatically updated. It is this interactive nature that makes Excel so powerful. However,
recognize that the ability to solve this problem hinges on being able to write the macro
with VBA.

mmﬂmmnimwm

— -
e MNOOOOEEMNO

A B | c | D | E | F | 6 | H
Parachutist Problem
m 68.1 kg 60 r
|cd 12.5 ky/s .
dt 01s 50
t vhum (m/s) vanal (m/s) 40
0.000 0.000

16.931 16.405 30
27.943 27.769
35.822 35.642 20
41.262 41.095

S

—&— vnum (mis)

it

o
© B

45.017 44.873 10 — — vanal (m/s)
47.610 47.490

49.400 49.303 S S S
50.635 50.559 10 20

2.5 MATLAB 41

2.5

It is the combination of the Excel environment with the VBA programming language
that truly opens up a world of possibilities for engineering problem solving. In the coming
chapters, we will illustrate how this is accomplished.

MATLAB

MATLAB is the flagship software product of The MathWorks, Inc., which was cofounded by
the numerical analysts Cleve Moler and John N. Little. As the name implies, MATLAB was
originally developed as a matrix laboratory. To this day, the major element of MATLAB is
still the matrix. Mathematical manipulations of matrices are very conveniently imple-
mented in an easy-to-use, interactive environment. To these matrix manipulations,
MATLAB has added a variety of numerical functions, symbolic computations, and visual-
ization tools. As a consequence, the present version represents a fairly comprehensive tech-
nical computing environment.

MATLAB has a variety of functions and operators that allow convenient implementa-
tion of many of the numerical methods developed in this book. These will be described in
detail in the individual chapters that follow. In addition, programs can be written as so-
called M-files that can be used to implement numerical calculations. Let us explore how
this is done.

First, you should recognize that normal MATLAB use is closely related to pro-
gramming. For example, suppose that we wanted to determine the analytical solution to the
parachutist problem. This could be done with the following series of MATLAB commands

>> g=9.8;

>> m=68.1;

>> cd=12.5;

>> tf=2;

>> v=g*m/cd*(1-exp(-cd/m*tf))

with the result being displayed as

VvV =
16.4050

Thus, the sequence of commands is just like the sequence of instructions in a typical pro-
gramming language.

Now what if you want to deviate from the sequential structure. Although there are
some neat ways to inject some nonsequential capabilities in the standard command mode,
the inclusion of decisions and loops is best done by creating a MATLAB document called
an M-file. To do this, make the menu selection

File New Mfile

and a new window will open with a heading “MATLAB Editor/Debugger.” In this window,
you can type and edit MATLAB programs. Type the following code there:

g=9.8;

m=68.1;

cd=12.5;

tf=2;
v=g*m/cd*(1-exp(-cd/m*tf))

42

PROGRAMMING AND SOFTWARE

Notice how the commands are written in exactly the way as they would be written in
the front end of MATLAB. Save the program with the name: analpara. MATLAB will au-
tomatically attach the extension .m to denote it as an M-file: analpara.m.

To run the program, you must go back to the command mode. The most direct way to
do this is to click on the “MATLAB Command Window” button on the task bar (which
is usually at the bottom of the screen).

The program can now be run by typing the name of the M-file, analpara, which should
look like

>> analpara

If you have done everything correctly, MATLAB should respond with the correct answer:

VvV =
16.4050

Now one problem with the foregoing is that it is set up to compute one case only. You
can make it more flexible by having the user input some of the variables. For example, sup-
pose that you wanted to assess the impact of mass on the velocity at 2 s. The M-file could
be rewritten as the following to accomplish this

0=9.8;

m=input("mass (kg):");
cd=12.5;

tw=2;
v=g*m/cd*(1-exp(-cd/m*tf))

Save this as analpara2.m. If you typed analpara2 while being in command mode, the
prompt would show

mass (kg):
The user could then enter a value like 100, and the result will be displayed as

VvV =
17.3420

Now it should be pretty clear how we can program a numerical solution with an M-
file. In order to do this, we must first understand how MATLAB handles logical and
looping structures. Figure 2.9 lists pseudocode alongside MATLAB code for all the con-
trol structures from the previous section. Although the structures of the pseudocode and
the MATLAB code are very similar, there are some slight differences that should be
noted.

In particular, look at how we have represented the DOEXIT structure. In place of
the DO, we use the statement WHILE(1). Because MATLAB interprets the number 1 as
corresponding to “true,” this statement will repeat infinitely in the same manner as the DO
statement. The loop is terminated with a break command. This command transfers control
to the statement following the end statement that terminates the loop.

(a) Pseudocode (b) MATLAB

IF/THEN:
IF condition THEN ifb~-=0
True block rl =-c / b;
ENDIF end
IF/THEN/ELSE:
IF condition THEN ifa<o
True block b = sqgrt(abs(a));
ELSE else
False block b = sqgrt(a);
ENDIF end
IF/THEN/ELSEIF:
IF condition; THEN if class ==
Block; X = X + 8;
ELSEIF condition, elseif class < 1
Block; X =X - 8;
ELSEIF conditions elseif class < 10
Blocks X = X — 32;
FLSE else
Blocky X = X — 64;
ENDIF end
CASE:
SELECT CASE Test Expression switch a + b
CASE Value; case 1
Block; X = =53
CASE Value, case 2
Block; Xx=-5—-(a+ b) / 10;
CASE Values case 3
Blocks x = (a + b) / 10;
CASE ELSE otherwise
Blocky X = 5;
END SELECT end
DOEXIT:
Do while (1)
Block; i=1 + 1;
IF condition EXIT if 1 >= 10, break, end
Block, J = i*x;
ENDDO end
FIGURE 2.9
The fundamental control COUNT-CONTROLLED LOOP:
sfructures in [a) pseudocode DOFOR 7 = start, finish, step for i = 1:2:10
and (b) the MATLAB Block X =X + i3

programming language. ENDDO end

PROGRAMMING AND SOFTWARE

Also notice that the parameters of the count-controlled loop are ordered differently.
For the pseudocode, the loop parameters are specified as start, finish, step. For
MATLAB, the parameters are ordered as start:step:finish.

The following MATLAB M-file can now be developed directly from the pseudocode
in Fig. 2.7. Type it into the MATLAB Editor/Debugger:

0=9.8;
m=input("mass (kg):");
cd=12.5;
ti=0;
tf=2;
vi=0;
dt=0.1;
t = ti;
vV = Vi;
h = dt;
while (1)
if t +dt > tf
h =1tf - t;
end
dv d =g-(d/m *v;
vV = Vv + dvdt * h;
t = + h;
if t >= tf, break, end
end
disp(“velocity (W/s):")
disp(v)

Save this file as numpara.m and return to the command mode and run it by entering:
numpara. The following output should result:

mass (kg): 100

velocity (m/s):
17.4381

As a final step in this development, let us take the above M-file and convert it into a
proper function. This can be done in the following M-file based on the pseudocode from
Fig. 2.7

function yy = euler(dt,ti,tf,yi,m,cd)

= ti;
y = yi;
h = dt;

if t>= tf break, end
end

Yy =Y;

2.6 MATHCAD 45

2.6

Save this file as euler.m and then create another M-file to compute the derivative,

function dydt = dy(t, v, m, cd)
g = 9.8;
dydt =g — (cd /7 m) * v;

Save this file as dy.m and return to the command mode. In order to invoke the function and
see the result, you can type in the following commands

>> m=68.1;

>> cd=12.5;

>> ti=0;

>> tf=2.;

>> vi=0;

>> dt=0.1;

>> euler(dt,ti,tf,vi,m,cd)

When the last command is entered, the answer will be displayed as

ans =
16.5309

It is the combination of the MATLAB environment with the M-file programming
language that truly opens up a world of possibilities for engineering problem solving. In the
coming chapters we will illustrate how this is accomplished.

MATHCAD

Mathcad attempts to bridge the gap between spreadsheets like Excel and notepads. It was
originally developed by Allen Razdow of MIT who cofounded Mathsoft, Inc., which
published the first commercial version in 1986. Today, Mathsoft is part of Parametric
Technology Corporation (PTC) and Mathcad is in version 14.

Mathcad is essentially an interactive notepad that allows engineers and scientists to
perform a number of common mathematical, data-handling, and graphical tasks. Infor-
mation and equations are input to a “whiteboard” design environment that is similar in
spirit to a page of paper. Unlike a programming tool or spreadsheet, Mathcad’s interface
accepts and displays natural mathematical notation using keystrokes or menu palette
clicks—with no programming required. Because the worksheets contain live calcula-
tions, a single keystroke that changes an input or equation instantly returns an updated
result.

Mathcad can perform tasks in either numeric or symbolic mode. In numeric mode,
Mathcad functions and operators give numerical responses, whereas in symbolic mode
results are given as general expressions or equations. Maple V, a comprehensive symbolic
math package, is the basis of the symbolic mode and was incorporated into Mathcad
in 1993.

Mathcad has a variety of functions and operators that allow convenient implementation
of many of the numerical methods developed in this book. These will be described in detail
in succeeding chapters. In the event that you are unfamiliar with Mathcad, Appendix C also
provides a primer on using this powerful software.

46

PROGRAMMING AND SOFTWARE

2.7

OTHER LANGUAGES AND LIBRARIES

In Secs. 2.4 and 2.5, we showed how Excel and MATLAB function procedures for Euler’s
method could be developed from an algorithm expressed as pseudocode. You should
recognize that similar functions can be written in high-level languages like Fortran 90 and
C++. For example, a Fortran 90 function for Euler’s method is

Function Euler(dt, ti, tf, yi, m, cd)

REAL dt, ti, tf, yi, m, cd
Real h, t, y, dydt

t = ti

y =yi

h = dt

Do
IT (t + dt > tf) Then

h=tf - t

End IFf
dydt = dy(t, y, m, cd)
y =y + dydt * h
t=t+h
IT (t >= tf) Exit

End Do

Euler = y

End Function

For C, the result would look quite similar to the MATLAB function. The point is that
once a well-structured algorithm is developed in pseudocode form, it can be readily imple-
mented in a variety of programming environments.

In this book, our approach will be to provide you with well-structured procedures writ-
ten as pseudocode. This collection of algorithms then constitutes a numerical library that
can be accessed to perform specific numerical tasks in a range of software tools and pro-
gramming languages.

Beyond your own programs, you should be aware that commercial programming
libraries contain many useful numerical procedures. For example, the Numerical Recipe
library includes a large range of algorithms written in Fortran and C.° These procedures are
described in both book (for example, Press et al. 1992) and electronic form.

SNumerical Recipe procedures are also available in book and electronic format for Pascal, MS BASIC, and
MATLAB. Information on all the Numerical Recipe products can be found at http://www.nr.com/.

PROBLEMS

47

PROBLEMS

2.1 Write pseudocode to implement the flowchart depicted in
Fig. P2.1. Make sure that proper indentation is included to make the
structure clear.

F T
x>10
F T
A 4
! i X=Xx-5
x=7.5 X=5
F
> (O

] :

:fi‘

Figure P2.1

2.2 Rewrite the following pseudocode using proper indentation

D0

T=1+1

IF z > 50 EXIT
X=x+5

IF x > 5 THEN
y=x

ELSE

y=20

ENDIF
zZ=X+y
ENDDO

2.3 Develop, debug, and document a program to determine the
roots of a quadratic equation, ax? + bx + c, in either a high-level
language or a macro language of your choice. Use a subroutine pro-
cedure to compute the roots (either real or complex). Perform test
runs for the cases () a=1,b=6,c=2; (b) a=0, b=—4,
c=16;(c)a=3,b=25c=7.

2.4 The cosine function can be evaluated by the following infinite
series:
2 44 46
cosx:l—ﬁ—kﬁ— ol
Write an algorithm to implement this formula so that it computes
and prints out the values of cos x as each term in the series is added.
In other words, compute and print in sequence the values for

cosx =1
X
COSX = —E
2

-1 X X
COSX = —ﬁ‘l-ﬁ

4

up to the order term n of your choosing. For each of the preceding,
compute and display the percent relative error as

true — series approximation
true

% error = x 100%

Write the algorithm as (a) a structured flowchart and (b) pseudo-
code.

2.5 Develop, debug, and document a program for Prob. 2.4 in
either a high-level language or a macro language of your choice.
Employ the library function for the cosine in your computer to
determine the true value. Have the program print out the series
approximation and the error at each step. As a test case, employ the
program to compute cos(1.25) for up to and including the term
x19/10!. Interpret your results.

2.6 The following algorithm is designed to determine a grade for a
course that consists of quizzes, homework, and a final exam:

Step 1: Input course number and name.

Step 2: Input weighting factors for quizzes (WQ), homework
(WH), and the final exam (WF).

Step 3: Input quiz grades and determine an average quiz grade (AQ).

Step 4: Input homework grades and determine an average home-
work grade (AH).

Step 5: If this course has a final grade, continue to step 6. If not, go
to step 9.

Step 6: Input final exam grade (FE).

Step 7: Determine average grade AG according to

AG = WQx AQ+WH x AH + WF x FE
N WQ + WH + WF

x 100%

Step 8: Go to step 10.
Step 9: Determine average grade AG according to

_ WQ x AQ +WH x AH

AG = 100%
WQ + WH i

Step 10: Print out course number, name, and average grade.

48 PROGRAMMING AND SOFTWARE

Step 11: Terminate computation.

(a) Write well-structured pseudocode to implement this algorithm.

(b) Write, debug, and document a structured computer program
based on this algorithm. Test it using the following data to
calculate a grade without the final exam and a grade with the
final exam: WQ = 35; WH = 30; WF = 35; quizzes = 98, 85,
90, 65, 99; homework = 95, 90, 87, 100, 92, 77; and final
exam = 92.

2.7 The “divide and average” method, an old-time method for ap-

proximating the square root of any positive number a can be for-

mulated as

X
w o Xtax
2

(a) Write well-structured pseudocode to implement this algorithm
as depicted in Fig. P2.7. Use proper indentation so that the
structure is clear.

(b) Develop, debug, and document a program to implement this
equation in either a high-level language or a macro language of
your choice. Structure your code according to Fig. P2.7.

a>0 *

tol=107°
X =a/2

A 4

SquareRoot =0

y = (x + &/x)/2
e = |{y-x)yl
X=y

T

SquareRoot = x

Figure P2.7

2.8 An amount of money P is invested in an account where inter-
est is compounded at the end of the period. The future worth F
yielded at an interest rate i after n periods may be determined from
the following formula:

F=PAd+i)"

Write a program that will calculate the future worth of an invest-
ment for each year from 1 through n. The input to the function
should include the initial investment P, the interest rate i (as a dec-
imal), and the number of years n for which the future worth is to be
calculated. The output should consist of a table with headings and
columns for n and F. Run the program for P = $100,000,
i =0.06,and n = 5 years.

2.9 Economic formulas are available to compute annual payments
for loans. Suppose that you borrow an amount of money P and
agree to repay it in n annual payments at an interest rate of i. The
formula to compute the annual payment A is

i1+
1+ -1

Write a program to compute A. Test it with P = $55,000 and an in-
terest rate of 6.6% (i = 0.066). Compute results forn =1, 2, 3, 4,
and 5 and display the results as a table with headings and columns
for nand A.

2.10 The average daily temperature for an area can be approxi-
mated by the following function,

T = Tmean + (Tpeak — Tmean) COS((t — tpeak))

where Tmean = the average annual temperature, Tpeak = the peak
temperature, o =the frequency of the annual variation
(= 27/365), and tpeak = day of the peak temperature (= 205 d).
Develop a program that computes the average temperature between
two days of the year for a particular city. Test it for (@)
January—February (t =0 to 59) in Miami, Florida (Tmean =
22.1°C; Tpeak = 28.3°C), and (b) July—-August (t = 180 to 242) in
Boston, Massachusetts (Tmean = 10.7°C; Tpeak = 22.9°C).

2.11 Develop, debug, and test a program in either a high-level lan-
guage or a macro language of your choice to compute the velocity
of the falling parachutist as outlined in Example 1.2. Design the
program so that it allows the user to input values for the drag coef-
ficient and mass. Test the program by duplicating the results from
Example 1.2. Repeat the computation but employ step sizes of 1
and 0.5 s. Compare your results with the analytical solution ob-
tained previously in Example 1.1. Does a smaller step size make
the results better or worse? Explain your results.

2.12 The bubble sort is an inefficient, but easy-to-program, sorting
technique. The idea behind the sort is to move down through an
array comparing adjacent pairs and swapping the values if they are

PROBLEMS

49

out of order. For this method to sort the array completely, it may
need to pass through it many times. As the passes proceed for an
ascending-order sort, the smaller elements in the array appear to
rise toward the top like bubbles. Eventually, there will be a pass
through the array where no swaps are required. Then, the array is
sorted. After the first pass, the largest value in the array drops
directly to the bottom. Consequently, the second pass only has to
proceed to the second-to-last value, and so on. Develop a program
to set up an array of 20 random numbers and sort them in ascend-
ing order with the bubble sort (Fig. P2.12).

switch = false

T Not
switch
F swap
Q> Q4
‘ ¥
m=m-1 switch = true
A
~——
end ?

Figure P2.12

2.13 Figure P2.13 shows a cylindrical tank with a conical base. If
the liquid level is quite low in the conical part, the volume is sim-
ply the conical volume of liquid. If the liquid level is midrange in
the cylindrical part, the total volume of liquid includes the filled
conical part and the partially filled cylindrical part. Write a well-
structured function procedure to compute the tank’s volume as a
function of given values of R and d. Use decisional control struc-
tures (like If/Then, Elself, Else, End If). Design the function so that

it returns the volume for all cases where the depth is less than 3R.
Return an error message (“Overtop”) if you overtop the tank, that
is, d > 3R. Test it with the following data:

R | 1 1 1 1
d | 0.5 1.2 3.0 3.1
T 2R
d v

R
Figure P2.13
Il
y
< i
0 E
X
1] v

Figure P2.14

2.14 Two distances are required to specify the location of a point
relative to an origin in two-dimensional space (Fig. P2.14):

e The horizontal and vertical distances (x,y) in Cartesian
coordinates
¢ The radius and angle (r, 6) in radial coordinates.

It is relatively straightforward to compute Cartesian coordinates
(X, y) on the basis of polar coordinates (r, 0). The reverse process is
not so simple. The radius can be computed by the following formula:

r = /X2+y2

50

PROGRAMMING AND SOFTWARE

If the coordinates lie within the first and fourth coordinates (i.e.,
x > 0), then a simple formula can be used to compute 6

0 =tan"* (y)
X

The difficulty arises for the other cases. The following table sum-
marizes the possibilities:

x y 0

<0 >0 k]n‘w(y/x) + 7
<0 <0 ton’w(y/x) -7
<0 =0 bia

=0 >0 /2

=0 <0 —7/2

=0 =0 0

(a) Write a well-structured flowchart for a subroutine procedure to
calculate r and 6 as a function of x and y. Express the final re-
sults for 6 in degrees.

(b) Write a well-structured function procedure based on your flow-
chart. Test your program by using it to fill out the following table:

|
O—0O —— -0 — —

y
0

1

1

1
0
—1
—1
-1
0

2.15 Develop a well-structured function procedure that is passed a
numeric grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria
A Q0 < numeric grade < 100
B 80 < numeric grade < Q0
C 70 < numeric grade < 80
D 60 < numeric grade < 70
F numeric grade < 60

2.16 Develop well-structured function procedures to determine
(a) the factorial; (b) the minimum value in a vector; and (c) the av-
erage of the values in a vector.

2.17 Develop well-structured programs to (a) determine the square
root of the sum of the squares of the elements of a two-dimensional
array (i.e., a matrix) and (b) normalize a matrix by dividing each
row by the maximum absolute value in the row so that the maxi-
mum element in each row is 1.

2.18 Piecewise functions are sometimes useful when the relation-
ship between a dependent and an independent variable cannot be
adequately represented by a single equation. For example, the
velocity of a rocket might be described by

11t — 5t 0<t=<10
1100 — 5t 10<t <20
v(t) = 3 50t +2(t —20)> 20 <t <30
1520e 70230 ¢ 5 30
0 otherwise

Develop a well-structured function to compute v as a function of t.
Then use this function to generate a table of v versus t fort = —5
to 50 at increments of 0.5.

2.19 Develop a well-structured function to determine the elapsed
days in a year. The function should be passed three values: mo = the
month (1-12), da = the day (1-31) and leap = (0 for non-leap
year and 1 for leap year). Test it for January 1, 1999; February 29,
2000; March 1, 2001; June 21, 2002; and December 31, 2004. Hint:
a nice way to do this combines the for and the swi tch structures.
2.20 Develop a well-structured function to determine the elapsed
days in a year. The first line of the function should be set up as

function nd = days(mo, da, year)

where mo = the month (1-12), da = the day (1-31) and year =
the year. Test it for January 1, 1999; February 29, 2000; March 1,
2001; June 21, 2002; and December 31, 2004.

2.21 Manning’s equation can be used to compute the velocity of
water in a rectangular open channel,

2/3
u_VYS(_BH !
~ n \B+2H

where U = velocity (m/s), S = channel slope, n = roughness coef-
ficient, B = width (m), and H = depth (m). The following data is
available for five channels:

n S B H
0.035 0.0001 10 2
0.020 0.0002 8 |
0.015 0.0010 20 1.5
0.030 0.0007 24 3
0.022 0.0003 15 2.5

PROBLEMS

51

Write a well-structured program that computes the velocity for
each of these channels. Have the program display the input data
along with the computed velocity in tabular form where velocity
is the fifth column. Include headings on the table to label the
columns.

2.22 A simply supported beam is loaded as shown in Fig. P2.22.
Using singularity functions, the displacement along the beam can
be expressed by the equation:

-5 15
Uy () =[x = 0 = (x = 5] + £ (x = 8)°
2 57 3
+75(x = 7)" + i 238.25x
By definition, the singularity function can be expressed as follows:

(x —a)" whenx > a

(x—a)" =
0 whenx < a

Develop a program that creates a plot of displacement versus dis-
tance along the beam x. Note that x = 0 at the left end of the beam.

20 kips/ft
150 kip-ft 15 kips
0/) |
T f i
] & L PP >]

Figure P2.22

2.23 The volume V of liquid in a hollow horizontal cylinder of
radius r and length L is related to the depth of the liquid h by

V= |:r2cos1 (r;h) —(r —h)W2rh — h2:| L
Develop a well-structured function to create a plot of volume
versus depth. Test the program forr = 2mand L = 5m.

2.24 Develop a well-structured program to compute the velocity of
a parachutist as a function of time using Euler’s method. Test your
program for the case where m = 80 kg and ¢ = 10 kg/s. Perform the
calculation from t = 0 to 20 s with a step size of 2 s. Use an initial
condition that the parachutist has an upward velocity of 20 m/s at
t = 0. Att = 10 s, assume that the parachute is instantaneously
deployed so that the drag coefficient jumps to 50 kg/s.

2.25 The pseudocode in Fig. P2.25 computes the factorial. Express
this algorithm as a well-structured function in the language of your
choice. Test it by computing 0! and 5! In addition, test the error trap
by trying to evaluate —2!

FUNCTION fac(n)
IF n = 0 THEN
x=1
DOFOR i =1, n
X=X-1
END DO
fac = x
ELSE
display error message
terminate
ENDIF
END fac

Figure P2.25

52

Approximations and
Round-Off Errors

Because so many of the methods in this book are straightforward in description and appli-
cation, it would be very tempting at this point for us to proceed directly to the main body
of the text and teach you how to use these techniques. However, understanding the concept
of error is so important to the effective use of numerical methods that we have chosen to
devote the next two chapters to this topic.

The importance of error was introduced in our discussion of the falling parachutist in
Chap. 1. Recall that we determined the velocity of a falling parachutist by both analytical
and numerical methods. Although the numerical technique yielded estimates that were
close to the exact analytical solution, there was a discrepancy, or error, because the numer-
ical method involved an approximation. Actually, we were fortunate in that case because
the availability of an analytical solution allowed us to compute the error exactly. For many
applied engineering problems, we cannot obtain analytical solutions. Therefore, we cannot
compute exactly the errors associated with our numerical methods. In these cases, we must
settle for approximations or estimates of the errors.

Such errors are characteristic of most of the techniques described in this book. This
statement might at first seem contrary to what one normally conceives of as sound engi-
neering. Students and practicing engineers constantly strive to limit errors in their work.
When taking examinations or doing homework problems, you are penalized, not rewarded,
for your errors. In professional practice, errors can be costly and sometimes catastrophic.
If a structure or device fails, lives can be lost.

Although perfection is a laudable goal, it is rarely, if ever, attained. For example, despite
the fact that the model developed from Newton’s second law is an excellent approximation,
it would never in practice exactly predict the parachutist’s fall. A variety of factors such as
winds and slight variations in air resistance would result in deviations from the prediction.
If these deviations are systematically high or low, then we might need to develop a new
model. However, if they are randomly distributed and tightly grouped around the prediction,
then the deviations might be considered negligible and the model deemed adequate.
Numerical approximations also introduce similar discrepancies into the analysis. Again, the
question is: How much the next error is present in our calculations and is it tolerable?

This chapter and Chap. 4 cover basic topics related to the identification, quantification,
and minimization of these errors. In this chapter, general information concerned with the
quantification of error is reviewed in the first sections. This is followed by a section on one

3.1 SIGNIFICANT FIGURES 53

3.1

of the two major forms of numerical error: round-off error. Round-off error is due to the fact
that computers can represent only quantities with a finite number of digits. Then Chap. 4
deals with the other major form: truncation error. Truncation error is the discrepancy in-
troduced by the fact that numerical methods may employ approximations to represent exact
mathematical operations and quantities. Finally, we briefly discuss errors not directly con-
nected with the numerical methods themselves. These include blunders, formulation or
model errors, and data uncertainty.

SIGNIFICANT FIGURES

This book deals extensively with approximations connected with the manipulation of num-
bers. Consequently, before discussing the errors associated with numerical methods, it is
useful to review basic concepts related to approximate representation of the numbers
themselves.

Whenever we employ a number in a computation, we must have assurance that it
can be used with confidence. For example, Fig. 3.1 depicts a speedometer and odometer
from an automobile. Visual inspection of the speedometer indicates that the car is traveling
between 48 and 49 km/h. Because the indicator is higher than the midpoint between the
markers on the gauge, we can say with assurance that the car is traveling at approximately
49 km/h. We have confidence in this result because two or more reasonable individuals
reading this gauge would arrive at the same conclusion. However, let us say that we insist
that the speed be estimated to one decimal place. For this case, one person might say 48.8,
whereas another might say 48.9 km/h. Therefore, because of the limits of this instrument,

FIGURE 3.1
An automobile speedometer and odometer illustrating the concept of a significant figure.

54

APPROXIMATIONS AND ROUND-OFF ERRORS

only the first two digits can be used with confidence. Estimates of the third digit (or higher)
must be viewed as approximations. It would be ludicrous to claim, on the basis of this
speedometer, that the automobile is traveling at 48.8642138 km/h. In contrast, the odome-
ter provides up to six certain digits. From Fig. 3.1, we can conclude that the car has trav-
eled slightly less than 87,324.5 km during its lifetime. In this case, the seventh digit (and
higher) is uncertain.

The concept of a significant figure, or digit, has been developed to formally designate
the reliability of a numerical value. The significant digits of a number are those that can be
used with confidence. They correspond to the number of certain digits plus one estimated
digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings of three
and seven significant figures, respectively. For the speedometer, the two certain digits are
48. It is conventional to set the estimated digit at one-half of the smallest scale division on
the measurement device. Thus the speedometer reading would consist of the three signifi-
cant figures: 48.5. In a similar fashion, the odometer would yield a seven-significant-figure
reading of 87,324.45.

Although it is usually a straightforward procedure to ascertain the significant figures
of a number, some cases can lead to confusion. For example, zeros are not always signifi-
cant figures because they may be necessary just to locate a decimal point. The numbers
0.00001845, 0.0001845, and 0.001845 all have four significant figures. Similarly, when
trailing zeros are used in large numbers, it is not clear how many, if any, of the zeros are
significant. For example, at face value the number 45,300 may have three, four, or five
significant digits, depending on whether the zeros are known with confidence. Such
uncertainty can be resolved by using scientific notation, where 4.53 x 104, 4.530 x 10%,
45300 x 10* designate that the number is known to three, four, and five significant
figures, respectively.

The concept of significant figures has two important implications for our study of
numerical methods:

1. Asintroduced in the falling parachutist problem, numerical methods yield approximate
results. We must, therefore, develop criteria to specify how confident we are in our
approximate result. One way to do this is in terms of significant figures. For example,
we might decide that our approximation is acceptable if it is correct to four significant
figures.

2. Although quantities such as 7, e, or /7 represent specific quantities, they cannot be
expressed exactly by a limited number of digits. For example,

m = 3.141592653589793238462643 . . .

ad infinitum. Because computers retain only a finite number of significant figures, such
numbers can never be represented exactly. The omission of the remaining significant
figures is called round-off error.

Both round-off error and the use of significant figures to express our confidence in a
numerical result will be explored in detail in subsequent sections. In addition, the concept
of significant figures will have relevance to our definition of accuracy and precision in the
next section.

3.2 ACCURACY AND PRECISION 55

3.2

ACCURACY AND PRECISION

The errors associated with both calculations and measurements can be characterized with
regard to their accuracy and precision. Accuracy refers to how closely a computed or mea-
sured value agrees with the true value. Precision refers to how closely individual computed
or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice.
The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a numer-
ical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) is
defined as systematic deviation from the truth. Thus, although the shots in Fig. 3.2c are
more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because
they are both centered on the upper left quadrant of the target. Imprecision (also called un-
certainty), on the other hand, refers to the magnitude of the scatter. Therefore, although
Fig. 3.2b and d are equally accurate (that is, centered on the bull’s-eye), the latter is more
precise because the shots are tightly grouped.

Numerical methods should be sufficiently accurate or unbiased to meet the require-
ments of a particular engineering problem. They also should be precise enough for adequate

FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a] Inaccurate
and imprecise; (b] accurate and imprecise; (c] inaccurate and precise; (d) accurate and precise.

Increasing accuracy

‘
(b)

Increasing precision

56

APPROXIMATIONS AND ROUND-OFF ERRORS

3.3

EXAMPLE 3.1

engineering design. In this book, we will use the collective term error to represent both the
inaccuracy and the imprecision of our predictions. With these concepts as background, we
can now discuss the factors that contribute to the error of numerical computations.

ERROR DEFINITIONS

Numerical errors arise from the use of approximations to represent exact mathematical op-
erations and quantities. These include truncation errors, which result when approximations
are used to represent exact mathematical procedures, and round-off errors, which result
when numbers having limited significant figures are used to represent exact numbers. For
both types, the relationship between the exact, or true, result and the approximation can be
formulated as

True value = approximation + error (3.2)

By rearranging Eq. (3.1), we find that the numerical error is equal to the discrepancy be-
tween the truth and the approximation, as in

E¢ = true value — approximation (3.2)

where E; is used to designate the exact value of the error. The subscript t is included to des-
ignate that this is the “true” error. This is in contrast to other cases, as described shortly,
where an “approximate” estimate of the error must be employed.

A shortcoming of this definition is that it takes no account of the order of magni-
tude of the value under examination. For example, an error of a centimeter is much more
significant if we are measuring a rivet rather than a bridge. One way to account for the mag-
nitudes of the quantities being evaluated is to normalize the error to the true value, as in

true error

True fractional relative error = ————
true value

where, as specified by Eq. (3.2), error = true value — approximation. The relative error can
also be multiplied by 100 percent to express it as

true error

= ——100% (3.3)
true value

&t
where ¢; designates the true percent relative error.

Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a bridge
and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10,000 and
10 cm, respectively, compute (a) the true error and (b) the true percent relative error for
each case.

Solution.

(&) The error for measuring the bridge is [Eq. (3.2)]
E: = 10,000 — 9999 = 1 cm

3.3 ERROR DEFINITIONS 57

and for the rivet it is
Et=10—-9=1cm
(b) The percent relative error for the bridge is [Eq. (3.3)]

&t 100% = 0.01%

~ 10,000

and for the rivet it is

1
& = ElOO% = 10%
Thus, although both measurements have an error of 1 cm, the relative error for the rivet is
much greater. We would conclude that we have done an adequate job of measuring the
bridge, whereas our estimate for the rivet leaves something to be desired.

Notice that for Egs. (3.2) and (3.3), E and ¢ are subscripted with a t to signify that the
error is normalized to the true value. In Example 3.1, we were provided with this value. How-
ever, in actual situations such information is rarely available. For numerical methods, the
true value will be known only when we deal with functions that can be solved analytically.
Such will typically be the case when we investigate the theoretical behavior of a particular
technique for simple systems. However, in real-world applications, we will obviously not
know the true answer a priori. For these situations, an alternative is to normalize the error
using the best available estimate of the true value, that is, to the approximation itself, as in

o — approxmate _error 100% (3.4)

approximation
where the subscript a signifies that the error is normalized to an approximate value. Note
also that for real-world applications, Eg. (3.2) cannot be used to calculate the error term for
Eqg. (3.4). One of the challenges of numerical methods is to determine error estimates in the
absence of knowledge regarding the true value. For example, certain numerical methods
use an iterative approach to compute answers. In such an approach, a present approxima-
tion is made on the basis of a previous approximation. This process is performed repeat-
edly, or iteratively, to successively compute (we hope) better and better approximations.
For such cases, the error is often estimated as the difference between previous and current
approximations. Thus, percent relative error is determined according to
current approximation — previous approximation

€2 = b 100% 3.5)
current apprOX|mat|on

This and other approaches for expressing errors will be elaborated on in subsequent
chapters.

The signs of Egs. (3.2) through (3.5) may be either positive or negative. If the approx-
imation is greater than the true value (or the previous approximation is greater than the
current approximation), the error is negative; if the approximation is less than the true
value, the error is positive. Also, for Egs. (3.3) to (3.5), the denominator may be less than

58

APPROXIMATIONS AND ROUND-OFF ERRORS

EXAMPLE 3.2

zero, which can also lead to a negative error. Often, when performing computations, we
may not be concerned with the sign of the error, but we are interested in whether the per-
cent absolute value is lower than a prespecified percent tolerance ss. Therefore, it is often
useful to employ the absolute value of Egs. (3.2) through (3.5). For such cases, the compu-
tation is repeated until

leal < &s (3.6)

If this relationship holds, our result is assumed to be within the prespecified acceptable
level ¢5. Note that for the remainder of this text, we will almost exclusively employ ab-
solute values when we use relative errors.

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborough, 1966) that if the following criterion is met, we
can be assured that the result is correct to at least n significant figures.

& = (0.5 x 10°™M)% (3.7)

Error Estimates for lterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite
series. For example, the exponential function can be computed using
2 3 n
eX=1+X+_+X_+...+X_ (E3.2.1)
2 3! n!
Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ¢*. Equation (E3.2.1) is called a Maclaurin series expansion.
Starting with the simplest version, e* = 1, add terms one at a time to estimate e%°.
After each new term is added, compute the true and approximate percent relative errors
with Egs. (3.3) and (3.5), respectively. Note that the true value is e%° = 1.648721 Add
terms until the absolute value of the approximate error estimate ¢, falls below a prespeci-
fied error criterion e conforming to three significant figures.

Solution. First, Eq. (3.7) can be employed to determine the error criterion that ensures a
result is correct to at least three significant figures:

& = (0.5 x 10°7%)% = 0.05%

Thus, we will add terms to the series until ¢, falls below this level.
The first estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term, as in

¥ =1+x
or forx =0.5,
e =1+05=15
This represents a true percent relative error of [Eq. (3.3)]

164872115

= % — 9.029
&t 1628721 100% = 9.02%

3.3 ERROR DEFINITIONS 59

Equation (3.5) can be used to determine an approximate estimate of the error, as in
15-1

Ea =

100% = 33.3%

Because ¢, is not less than the required value of s,we would continue the computation by
adding another term, x2/2!, and repeating the error calculations. The process is continued
until g5 < &5. The entire computation can be summarized as

Terms Result et (%) £a (%)
|] 39.3
2 1.5 Q.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below s = 0.05% and the
computation is terminated. However, notice that, rather than three significant figures, the
result is accurate to five! This is because, for this case, both Egs. (3.5) and (3.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
as discussed in Chap. 6, this is not always the case for Eq. (3.5), it is true most of the time.

3.3.1 Computer Algorithm for Iterative Calculations

Many of the numerical methods described in the remainder of this text involve iterative cal-
culations of the sort illustrated in Example 3.2. These all entail solving a mathematical prob-
lem by computing successive approximations to the solution starting from an initial guess.

The computer implementation of such iterative solutions involves loops. As we saw in
Sec. 2.1.1, these come in two basic flavors: count-controlled and decision loops. Most iter-
ative solutions use decision loops. Thus, rather than employing a prespecified number of
iterations, the process typically is repeated until an approximate error estimate falls below
a stopping criterion as in Example 3.2.

A pseudocode for a generic iterative calculation is presented in Fig. 3.3. The function
is passed a value (val) along with a stopping error criterion (es) and a maximum allow-
able number of iterations (maxit). The value is typically either (1) an initial value or (2) the
value for which the iterative calculation is to be made.

The function first initializes three variables. These include (1) a variable iter that
keeps track of the number of iterations, (2) a variable sol that holds the current estimate
of the solution, and (3) a variable ea that holds the approximate percent relative error. Note
that ea is initially set to a value of 100 to ensure that the loop executes at least once.

These initializations are followed by the decision loop that actually implements the
iterative calculation. Prior to generating a new solution, sol is first assigned to solold.
Then a new value of soll is computed and the iteration counter is incremented. If the new
value of sol is nonzero, the percent relative error ea is determined. The stopping criteria

60

APPROXIMATIONS AND ROUND-OFF ERRORS

EXAMPLE 3.3

FUNCTION IterMeth(val, es, maxit)
iter = 1
sol = val
ea = 100
DO
solold = sol
sol = ...
iter = iter + 1
IF sol # 0 ea=abs((sol — solold)/sol)*100
IF ea = es OR iter = maxit EXIT
END DO
IterMeth = sol
END IterMeth

FIGURE 3.3

Pseudocode for a generic iterative calculation.

are then tested. If both are false, the loop repeats. If either are true, the loop terminates and
the final solution is sent back to the function call. The following example illustrates how
the generic algorithm can be applied to a specific iterative calculation.

Computer Implementation of an lterative Calculation

Problem Statement. Develop a computer program based on the pseudocode from
Fig. 3.3 to implement the calculation from Example 3.2.

Solution. Afunction to implement the Maclaurin series expansion for e* can be based on the
general scheme in Fig. 3.3. To do this, we first formulate the series expansion as a formula:

n

Figure 3.4 shows functions to implement this series written in VBA and MATLAB. Simi-
lar codes could be developed in other languages such a C++ or Fortran 95. Notice that
whereas MATLAB has a built-in factorial function, it is necessary to compute the fac-
torial as part of the VBA implementation with a simple product accumulator fac.

When the programs are run, they generate an estimate for the exponential function. For
the MATLAB version, the answer is returned along with the approximate error and the
number of iterations. For example, e! can be evaluated as

>> format long
>> [val, ea, iter] = lterMeth(1,1le-6,100)

val =
2.718281826198493
ea =
9.216155641522974e-007
iter =

12

3.3 ERROR DEFINITIONS 61

We can see that after 12 iterations, we obtain a result of 2.7182818 with an approxi-
mate error estimate of = 9.2162 X 1077%. The result can be verified by using the built-in
exp function to directly calculate the exact value and the true percent relative error,

>> trueval=exp(1)

trueval =
2.718281828459046

>> et=abs((trueval-val)/trueval)*100
et =
8.316108397236229e-008

As was the case with Example 3.2, we obtain the desirable outcome that the true error is
less than the approximate error.

(a) VBA/ Excel (b) MATLAB

Function lterMeth(x, es, maxit) function [v,ea,iter] = IterMeth(x,es,maxit)
“ initialization % initialization

iter = 1 iter = 1;

sol =1 sol = 1;

ea = 100 ea = 100;

fac = 1

“ iterative calculation % iterative calculation

Do while (1)

solold = sol
fac = fac * iter

solold = sol;

sol = sol + x ™ iter / fac sol = sol + x ™ iter / fTactorial(iter);

iter = iter + 1

iter = iter + 1;

ITf sol <> 0 Then if sol-=0
ea = Abs((sol - solold) 7/ sol) * 100 ea=abs((sol - solold)/sol)*100;
End If end
If ea <= es Or iter >= maxit Then Exit Do if ea<=es | iter>=maxit,break,end
Loop end
IterMeth = sol v = sol;
End Function end

FIGURE 3.4

(a) VBA/Excel and (b] MATLAB functions based on the pseudocode from Fig. 3.3.

With the preceding definitions as background, we can now proceed to the two types

of error connected directly with numerical methods: round-off errors and truncation
errors.

62

APPROXIMATIONS AND ROUND-OFF ERRORS

3.4

ROUND-OFF ERRORS

As mentioned previously, round-off errors originate from the fact that computers retain
only a fixed number of significant figures during a calculation. Numbers such as 7, e, or
/7 cannot be expressed by a fixed number of significant figures. Therefore, they cannot be
represented exactly by the computer. In addition, because computers use a base-2 repre-
sentation, they cannot precisely represent certain exact base-10 numbers. The discrepancy
introduced by this omission of significant figures is called round-off error.

3.4.1 Computer Representation of Numbers

Numerical round-off errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is called a word.
This is an entity that consists of a string of binary digits, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first review
some material related to number systems.

Number Systems. A number system is merely a convention for representing quantities.
Because we have 10 fingers and 10 toes, the number system that we are most familiar with
is the decimal, or base-10, number system. A base is the number used as the reference for
constructing the system. The base-10 system uses the 10 digits—0, 1, 2, 3,4, 5, 6, 7, 8, 9—
to represent numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position or
place value specifying the magnitude. The right-most digit in a whole number represents a
number from 0 to 9. The second digit from the right represents a multiple of 10. The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 86,409 then we have eight groups of 10,000, six groups of 1000, four groups of
100, zero groups of 10, and nine more units, or

(8 x 10%) + (6 x 10°) + (4 x 10%) + (0 x 10') + (9 x 10°) = 86,409

Figure 3.5a provides a visual representation of how a number is formulated in the
base-10 system. This type of representation is called positional notation.

Because the decimal system is so familiar, it is not commonly realized that there are
alternatives. For example, if human beings happened to have had eight fingers and eight
toes, we would undoubtedly have developed an octal, or base-8, representation. In the
same sense, our friend the computer is like a two-fingered animal who is limited to two
states—either 0 or 1. This relates to the fact that the primary logic units of digital computers
are on/off electronic components. Hence, numbers on the computer are represented with
a binary, or base-2, system. Just as with the decimal system, quantities can be repre-
sented using positional notation. For example, the binary number 11 is equivalent to (1 x
21) + (1 x 2% =2 + 1 = 3 in the decimal system. Figure 3.5 illustrates a more compli-
cated example.

Integer Representation. Now that we have reviewed how base-10 numbers can be rep-
resented in binary form, it is simple to conceive of how integers are represented on a com-
puter. The most straightforward approach, called the signed magnitude method, employs
the first bit of a word to indicate the sign, with a 0 for positive and a 1 for negative. The

3.4 ROUND-OFF ERRORS 63

|
8 6 4 0 9

DT
0 X 10 = 0
4 X 100 = 400

(a) 6 X 1,000 = 6,000
8 X 10,000 = 80,000
86,409

27 26 25 24 23 22 21 20

1 0 1. 0 1 1 0 1

N N——1x 1= 1
0x 2= 0

1x 4= 4

8

0

1x 8=
0x 16 =

1x 32= 32

(b) 0x 64= 0

1% 128 =128

173

FIGURE 3.5
How the [a) decimal (base 10) and the (b) binary (base 2] systems work. In (b), the binary num-
ber 10101101 is equivalent fo the decimal number 173.

1{0{0fO0OfO0O|O0O|O[O(T|O|T[O|T]T]O0]1

T Nunvwber
Sign
FIGURE 3.6

The representation of the decimal integer —173 on a 16-bit computer using the signed
magnitude method.

remaining bits are used to store the number. For example, the integer value of —173 would
be stored on a 16-bit computer, as in Fig. 3.6.
EXAMPLE 3.4 Range of Integers

Problem Statement. Determine the range of integers in base-10 that can be represented
on a 16-bhit computer.

64

APPROXIMATIONS AND ROUND-OFF ERRORS

Solution. Of the 16 bits, the first bit holds the sign. The remaining 15 bits can hold bi-
nary numbers from 0 to 111111111111111. The upper limit can be converted to a decimal
integer, as in

Ax2"M+@x2®)+- +@x2H+@Ax29

which equals 32,767 (note that this expression can be simply evaluated as 2'° — 1). Thus,
a 16-bit computer word can store decimal integers ranging from —32,767 to 32,767. In
addition, because zero is already defined as 0000000000000000, it is redundant to use the
number 1000000000000000 to define a “minus zero.” Therefore, it is usually employed to
represent an additional negative number: —32,768, and the range is from —32,768 to
32,767.

Note that the signed magnitude method described above is not used to represent inte-
gers on conventional computers. A preferred approach called the 2’s complement technique
directly incorporates the sign into the number’s magnitude rather than providing a separate
bit to represent plus or minus (see Chapra and Canale 1994). However, Example 3.4 still
serves to illustrate how all digital computers are limited in their capability to represent
integers. That is, numbers above or below the range cannot be represented. A more serious
limitation is encountered in the storage and manipulation of fractional quantities as de-
scribed next.

Floating-Point Representation. Fractional quantities are typically represented in com-
puters using floating-point form. In this approach, the number is expressed as a fractional
part, called a mantissa or significand, and an integer part, called an exponent or character-
istic, as in

m - b®

where m = the mantissa, b = the base of the number system being used, and e = the expo-
nent. For instance, the number 156.78 could be represented as 0.15678 x 10° in a floating-
point base-10 system.

Figure 3.7 shows one way that a floating-point number could be stored in a word. The
first bit is reserved for the sign, the next series of bits for the signed exponent, and the last
bits for the mantissa.

FIGURE 3.7
The manner in which a floating-point number is stored in a word.

Signed

exponent |

Mantissa

Sign

3.4 ROUND-OFF ERRORS 65

EXAMPLE 3.5

Note that the mantissa is usually normalized if it has leading zero digits. For example,
suppose the quantity 1/34 = 0.029411765 . . . was stored in a floating-point base-10 sys-
tem that allowed only four decimal places to be stored. Thus, 1/34 would be stored as

0.0294 x 10°

However, in the process of doing this, the inclusion of the useless zero to the right of the
decimal forces us to drop the digit 1 in the fifth decimal place. The number can be normal-
ized to remove the leading zero by multiplying the mantissa by 10 and lowering the expo-
nent by 1 to give

0.2941 x 1071

Thus, we retain an additional significant figure when the number is stored.
The consequence of normalization is that the absolute value of m is limited. That is,

<m<l1 (3.8)

Tl

where b = the base. For example, for a base-10 system, m would range between 0.1 and 1,
and for a base-2 system, between 0.5 and 1.

Floating-point representation allows both fractions and very large humbers to be
expressed on the computer. However, it has some disadvantages. For example, float-
ing-point numbers take up more room and take longer to process than integer num-
bers. More significantly, however, their use introduces a source of error because the
mantissa holds only a finite number of significant figures. Thus, a round-off error is
introduced.

Hypothetical Set of Floating-Point Numbers

Problem Statement. Create a hypothetical floating-point number set for a machine
that stores information using 7-bit words. Employ the first bit for the sign of the number,
the next three for the sign and the magnitude of the exponent, and the last three for the
magnitude of the mantissa (Fig. 3.8).

FIGURE 3.8

The smallest possible positive floating-point number from Example 3.5.

21 20 271 22 28

o|1][1]1|1]0]o0
T agmitude

.) Magnitude
Sign of Sign of of mantissa
number exponent

Magnitude

of exponent

66

APPROXIMATIONS AND ROUND-OFF ERRORS

Solution. The smallest possible positive number is depicted in Fig. 3.8. The initial 0 in-
dicates that the quantity is positive. The 1 in the second place designates that the exponent
has a negative sign. The 1’s in the third and fourth places give a maximum value to the
exponent of

1x2'+1x2°=3

Therefore, the exponent will be —3. Finally, the mantissa is specified by the 100 in the last
three places, which conforms to

1x214+0x2240x2°%=05

Although a smaller mantissa is possible (e.g., 000, 001, 010, 011), the value of 100 is used
because of the limit imposed by normalization [Eq. (3.8)]. Thus, the smallest possible pos-
itive number for this system is +-0.5 x 22, which is equal to 0.0625 in the base-10 system.
The next highest numbers are developed by increasing the mantissa, as in

0111101 = (1 x 271 40 x 272 +1 x 273%) x 27% = (0.078125);

0111110 = 1 x 27+ 1 x 272+ 0 x 27%) x 273 = (0.093750) 19

0111111 = (1 x 27 4+ 1 x 272+ 1 x 273%) x 27% = (0.109375)19
Notice that the base-10 equivalents are spaced evenly with an interval of 0.015625.

At this point, to continue increasing, we must decrease the exponent to 10, which gives
a value of

1x2'+0x2°=2
The mantissa is decreased back to its smallest value of 100. Therefore, the next number is
0110100 = (1 x 27+ 0x 2724+ 0 x 27%) x 272 = (0.125000)19

This still represents a gap of 0.125000 — 0.109375 = 0.015625. However, now when
higher numbers are generated by increasing the mantissa, the gap is lengthened to 0.03125,

0110101 = 1 x 271 +0x 27241 x 27%) x 272 = (0.156250)19
0110110 = (1 x 271 +1x 2724+ 0 x 273) x 272 = (0.187500)1¢
0110111 = 1 x 271 +1x 27241 x 27%) x 272 = (0.218750)19

This pattern is repeated as each larger quantity is formulated until a maximum number is
reached,

0011111 = (1 x 2 4+1x224+1x23) x 22 = (N
The final number set is depicted graphically in Fig. 3.9.

Figure 3.9 manifests several aspects of floating-point representation that have signifi-
cance regarding computer round-off errors:

1. There Is a Limited Range of Quantities That May Be Represented. Just as for the inte-
ger case, there are large positive and negative numbers that cannot be represented.
Attempts to employ numbers outside the acceptable range will result in what is called

3.4 ROUND-OFF ERRORS 67

Chopping Rounding
X — Ax

7
} + + { Overflow —

0 HitHHH-HH———+—

\y

@

Underflow “hole”
at zero

FIGURE 3.9

The hypothetical number system developed in Example 3.5. Each value is indicated by a fick
mark. Only the positive numbers are shown. An identical set would also extend in the
negative direction.

an overflow error. However, in addition to large quantities, the floating-point repre-
sentation has the added limitation that very small numbers cannot be represented. This
is illustrated by the underflow “hole” between zero and the first positive number in
Fig. 3.9. It should be noted that this hole is enlarged because of the normalization
constraint of Eq. (3.8).

2. There Are Only a Finite Number of Quantities That Can Be Represented within the
Range. Thus, the degree of precision is limited. Obviously, irrational numbers cannot be
represented exactly. Furthermore, rational numbers that do not exactly match one of the
values in the set also cannot be represented precisely. The errors introduced by approx-
imating both these cases are referred to as quantizing errors. The actual approximation
is accomplished in either of two ways: chopping or rounding. For example, suppose that
the value of 7 = 3.14159265358 . . . is to be stored on a base-10 number system carry-
ing seven significant figures. One method of approximation would be to merely omit,
or “chop off,” the eighth and higher terms, as in = = 3.141592, with the introduction of
an associated error of [Eq. (3.2)]

E:; = 0.00000065. ..

This technique of retaining only the significant terms was originally dubbed “trun-
cation” in computer jargon. We prefer to call it chopping to distinguish it from the
truncation errors discussed in Chap. 4. Note that for the base-2 number system in

68

APPROXIMATIONS AND ROUND-OFF ERRORS

EXAMPLE 3.6

Fig. 3.9, chopping means that any quantity falling within an interval of length Ax will
be stored as the quantity at the lower end of the interval. Thus, the upper error bound
for chopping is Ax. Additionally, a bias is introduced because all errors are positive.
The shortcomings of chopping are attributable to the fact that the higher terms in the
complete decimal representation have no impact on the shortened version. For
instance, in our example of r, the first discarded digit is 6. Thus, the last retained digit
should be rounded up to yield 3.141593. Such rounding reduces the error to

E. = —0.00000035....

Consequently, rounding yields a lower absolute error than chopping. Note that for the
base-2 number system in Fig. 3.9, rounding means that any quantity falling within an in-
terval of length Ax will be represented as the nearest allowable number. Thus, the upper
error bound for rounding is Ax/2. Additionally, no bias is introduced because some
errors are positive and some are negative. Some computers employ rounding. However,
this adds to the computational overhead, and, consequently, many machines use simple
chopping. This approach is justified under the supposition that the number of significant
figures is large enough that resulting round-off error is usually negligible.

. The Interval between Numbers, Ax, Increases as the Numbers Grow in Magnitude. It

is this characteristic, of course, that allows floating-point representation to preserve
significant digits. However, it also means that quantizing errors will be proportional to
the magnitude of the number being represented. For normalized floating-point num-
bers, this proportionality can be expressed, for cases where chopping is employed, as
|AX]

<

= cg 3.9
X e

and, for cases where rounding is employed, as

|AX] - é (3.10)
x| — 2 '

where € is referred to as the machine epsilon, which can be computed as

€ =b't (3.11)

where b is the number base and t is the number of significant digits in the mantissa.
Notice that the inequalities in Egs. (3.9) and (3.10) signify that these are error bounds.
That is, they specify the worst cases.

Machine Epsilon

Problem Statement. Determine the machine epsilon and verify its effectiveness in
characterizing the errors of the number system from Example 3.5. Assume that chopping
is used.

Solution. The hypothetical floating-point system from Example 3.5 employed values of
the base b = 2, and the number of mantissa bits t = 3. Therefore, the machine epsilon
would be [Eq. (3.11)]

€ =21"%-025

3.4 ROUND-OFF ERRORS 69

epsilon = 1
D0
IF (epsilon+1=1)EXIT
epsilon = epsilon/2
END DO
epsilon = 2 X epsilon

FIGURE 3.11

Pseudocode to defermine
machine epsilon for a binary
computer.

| | | | d | |

Largest relative
error

FIGURE 3.10
The largest quantizing error will occur for those values falling just below the upper bound of the
first of a series of equispaced intervals.

Consequently, the relative quantizing error should be bounded by 0.25 for chopping. The
largest relative errors should occur for those quantities that fall just below the upper bound
of the first interval between successive equispaced numbers (Fig. 3.10). Those numbers
falling in the succeeding higher intervals would have the same value of Ax but a greater
value of x and, hence, would have a lower relative error. An example of a maximum error
would be a value falling just below the upper bound of the interval between (0.125000)4
and (0.156250),0. For this case, the error would be less than

0.03125

0.125000 ~ 02

Thus, the error is as predicted by Eq. (3.9).

The magnitude dependence of quantizing errors has a number of practical applications in
numerical methods. Most of these relate to the commonly employed operation of testing
whether two numbers are equal. This occurs when testing convergence of quantities as well as
in the stopping mechanism for iterative processes (recall Example 3.2). For these cases, it
should be clear that, rather than test whether the two quantities are equal, it is advisable to test
whether their difference is less than an acceptably small tolerance. Further, it should also be
evident that normalized rather than absolute difference should be compared, particularly when
dealing with numbers of large magnitude. In addition, the machine epsilon can be employed
in formulating stopping or convergence criteria. This ensures that programs are portable—that
is, they are not dependent on the computer on which they are implemented. Figure 3.11 lists
pseudocode to automatically determine the machine epsilon of a binary computer.

Extended Precision. It should be noted at this point that, although round-off errors can
be important in contexts such as testing convergence, the number of significant digits car-
ried on most computers allows most engineering computations to be performed with more
than acceptable precision. For example, the hypothetical number system in Fig. 3.9 is a
gross exaggeration that was employed for illustrative purposes. Commercial computers use
much larger words and, consequently, allow numbers to be expressed with more than ade-
quate precision. For example, computers that use IEEE format allow 24 bits to be used for
the mantissa, which translates into about seven significant base-10 digits of precision! with
a range of about 1072 to 10%.

INote that only 23 bits are actually used to store the mantissa. However, because of normalization, the first bit of
the mantissa is always 1 and is, therefore, not stored. Thus, this first bit together with the 23 stored bits gives the
24 total bits of precision for the mantissa.

70

APPROXIMATIONS AND ROUND-OFF ERRORS

With this acknowledged, there are still cases where round-off error becomes critical.
For this reason most computers allow the specification of extended precision. The most
common of these is double precision, in which the number of words used to store floating-
point numbers is doubled. It provides about 15 to 16 decimal digits of precision and a range
of approximately 10~3% to 10%%,

In many cases, the use of double-precision quantities can greatly mitigate the effect of
round-off errors. However, a price is paid for such remedies in that they also require more
memory and execution time. The difference in execution time for a small calculation might
seem insignificant. However, as your programs become larger and more complicated, the
added execution time could become considerable and have a negative impact on your ef-
fectiveness as a problem solver. Therefore, extended precision should not be used frivo-
lously. Rather, it should be selectively employed where it will yield the maximum benefit
at the least cost in terms of execution time. In the following sections, we will look closer at
how round-off errors affect computations, and in so doing provide a foundation of under-
standing to guide your use of the double-precision capability.

Before proceeding, it should be noted that some of the commonly used software pack-
ages (for example, Excel, Mathcad) routinely use double precision to represent numerical
quantities. Thus, the developers of these packages decided that mitigating round-off errors
would take precedence over any loss of speed incurred by using extended precision.
Others, like MATLAB software, allow you to use extended precision, if you desire.

3.4.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in round-off error. In the following section, we
will first illustrate how common arithmetic operations affect round-off errors. Then we will
investigate a number of particular manipulations that are especially prone to round-off errors.

Common Arithmetic Operations. Because of their familiarity, normalized base-10
numbers will be employed to illustrate the effect of round-off errors on simple addition,
subtraction, multiplication, and division. Other number bases would behave in a similar
fashion. To simplify the discussion, we will employ a hypothetical decimal computer with
a 4-digit mantissa and a 1-digit exponent. In addition, chopping is used. Rounding would
lead to similar though less dramatic errors.

When two floating-point numbers are added, the mantissa of the number with the
smaller exponent is modified so that the exponents are the same. This has the effect of align-
ing the decimal points. For example, suppose we want to add 0.1557 - 10 + 0.4381 - 10~ 2.
The decimal of the mantissa of the second number is shifted to the left a number of places
equal to the difference of the exponents [1 — (—1) = 2], as in

0.4381 - 1071 — 0.004381 - 10*
Now the numbers can be added,

0.1557 - 10!

0.004381 - 10*

0.160081 - 10!
and the result chopped to 0.1600 - 10%. Notice how the last two digits of the second num-
ber that were shifted to the right have essentially been lost from the computation.

3.4 ROUND-OFF ERRORS 71

EXAMPLE 3.7

Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 - 10?
— 0.2686 - 102

0.0955 - 10?

For this case the result is not normalized, and so we must shift the decimal one place
to the right to give 0.9550 - 10' = 9.550. Notice that the zero added to the end of the man-
tissa is not significant but is merely appended to fill the empty space created by the shift.
Even more dramatic results would be obtained when the numbers are very close, as in

0.7642 - 10°
—0.7641 - 103

0.0001 - 10°

which would be converted to 0.1000 - 10° = 0.1000. Thus, for this case, three nonsignifi-
cant zeros are appended. This introduces a substantial computational error because subse-
quent manipulations would act as if these zeros were significant. As we will see in a later
section, the loss of significance during the subtraction of nearly equal numbers is among
the greatest source of round-off error in numerical methods.

Multiplication and division are somewhat more straightforward than addition or sub-
traction. The exponents are added and the mantissas multiplied. Because multiplication of
two n-digit mantissas will yield a 2n-digit result, most computers hold intermediate results
in a double-length register. For example,

0.1363 - 10° x 0.6423 - 10" = 0.08754549 - 102

If, as in this case, a leading zero is introduced, the result is normalized,
0.08754549 - 10> — 0.8754549 - 10!

and chopped to give
0.8754 - 10*

Division is performed in a similar manner, but the mantissas are divided and the expo-
nents are subtracted. Then the results are normalized and chopped.

Large Computations. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often in-
terdependent. That is, the later calculations are dependent on the results of earlier ones.
Consequently, even though an individual round-off error could be small, the cumulative
effect over the course of a large computation can be significant.

Large Numbers of Interdependent Computations

Problem Statement. Investigate the effect of round-off error on large numbers of inter-
dependent computations. Develop a program to sum a number 100,000 times. Sum the
number 1 in single precision, and 0.00001 in single and double precision.

Solution. Figure 3.12 shows a Fortran 90 program that performs the summation. Whereas
the single-precision summation of 1 yields the expected result, the single-precision

72

APPROXIMATIONS AND ROUND-OFF ERRORS

FIGURE 3.12

Fortran QO program to sum
a number 10° times. The
case sums the number 1 in
single precision and the
number 1072 in single and
double precision.

PROGRAM fig0312

IMPLICIT none

INTEGER: -1

REAL::suml, sum2, x1, %2

DOUBLE PRECISION::sum3, X3

suml=0.

sum2=0.

sum3=0.

x1=1.

x2=1.e-5

x3=1.d-5

DO i1=1,100000
suml=suml+x1
sum2=sum2+x2
sum3=sum3+x3

END DO

PRINT *, suml

PRINT *, sum2

PRINT *, sum3

END

output:

100000.000000

1.000990

9.999999999980838E-001

summation of 0.00001 yields a large discrepancy. This error is reduced significantly when
0.00001 is summed in double precision.

Quantizing errors are the source of the discrepancies. Because the integer 1 can be rep-
resented exactly within the computer, it can be summed exactly. In contrast, 0.00001 can-
not be represented exactly and is quantized by a value that is slightly different from its true
value. Whereas this very slight discrepancy would be negligible for a small computation, it
accumulates after repeated summations. The problem still occurs in double precision but is
greatly mitigated because the quantizing error is much smaller.

Note that the type of error illustrated by the previous example is somewhat atypical in that
all the errors in the repeated operation are of the same sign. In most cases the errors of a long
computation alternate sign in a random fashion and, thus, often cancel out. However, there are
also instances where such errors do not cancel but, in fact, lead to a spurious final result. The
following sections are intended to provide insight into ways in which this may occur.

Adding a Large and a Small Number. Suppose we add a small number, 0.0010, to a
large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit
exponent. We modify the smaller number so that its exponent matches the larger,

0.4000 - 10*
0.0000001 - 104

0.4000001 - 10*

3.4 ROUND-OFF ERRORS 73

EXAMPLE 3.8

which is chopped to 0.4000 - 10% Thus, we might as well have not performed the
addition!

This type of error can occur in the computation of an infinite series. The initial terms
in such series are often relatively large in comparison with the later terms. Thus, after a
few terms have been added, we are in the situation of adding a small quantity to a large
quantity.

One way to mitigate this type of error is to sum the series in reverse order—that is, in
ascending rather than descending order. In this way, each new term will be of comparable
magnitude to the accumulated sum (see Prob. 3.5).

Subtractive Cancellation. This term refers to the round-off induced when subtracting
two nearly equal floating-point numbers.

One common instance where this can occur involves finding the roots of a quadratic
equation or parabola with the quadratic formula,

_ /b2 —
X1 _ —b=vb? - 4ac (3.12)
X2 2a

For cases where b? > 4ac, the difference in the numerator can be very small. In such cases,
double precision can mitigate the problem. In addition, an alternative formulation can be
used to minimize subtractive cancellation,

X1 —-2c

X2 - b £+ Vb% — 4ac

An illustration of the problem and the use of this alternative formula are provided in the
following example.

(3.13)

Subtractive Cancellation

Problem Statement. Compute the values of the roots of a quadratic equation witha = 1,
b = 3000.001, and ¢ = 3. Check the computed values versus the true roots of x; = —0.001
and x, = —3000.

Solution. Figure 3.13 shows an Excel/\VVBA program that computes the roots x; and X, on
the basis of the quadratic formula [(Eq. (3.12)]. Note that both single- and double-precision
versions are given. Whereas the results for x, are adequate, the percent relative errors for x;
are poor for the single-precision version, i = 2.4%. This level could be inadequate for
many applied engineering problems. This result is particularly surprising because we are
employing an analytical formula to obtain our solution!

The loss of significance occurs in the line of both programs where two relatively
large numbers are subtracted. Similar problems do not occur when the same numbers are
added.

On the basis of the above, we can draw the general conclusion that the quadratic for-
mula will be susceptible to subtractive cancellation whenever b? > 4ac. One way to cir-
cumvent this problem is to use double precision. Another is to recast the quadratic formula
in the format of Eq. (3.13). As in the program output, both options give a much smaller
error because the subtractive cancellation is minimized or avoided.

74

APPROXIMATIONS AND ROUND-OFF ERRORS

Option Explicit

"Display results
Sheets(''sheetl'™) .Select

Sub fig0313() Range("'b2'") .Select
Dim a As Single, b As Single ActiveCell .Value = x1
Dim c As Single, d As Single ActiveCell .Offset(1, 0).Select
Dim x1 As Single, x2 As Single ActiveCell_Value = x2
Dim x1r As Single ActiveCell .Offset(2, 0).Select
Dim aa As Double, bb As Double ActiveCell _.Value = x11
Dim cc As Double, dd As Double ActiveCell .Offset(1, 0).Select
Dim x11 As Double, x22 As Double ActiveCell .Value = x22
ActiveCell .Offset(2, 0).Select
*Single precision: ActiveCell .Value = x1r
a=1: b = 3000.001: ¢c = 3 End Sub
d=Sqr(b *b -4 *a * c)
x1=(Cb+d)/ (@ *a)
xX2=(Cb-d) 7 @*a) OUTPUT :
"Double precision:
aa = 1: bb = 3000.001: cc =3 1 |Sin IeArecisilon resuIFS' | : |
dd —_Sqr(bb * bb -4 * aa * cc) 2 | ik -0.000976563 '
x11 = (-bb + dd) /7 (2 * aa) 3 w2 | -3000.00000000
x22 = (-bb - dd) /7 (2 * aa) IDouhle—precision results:
5 [x1 | 000100000
"Modified formula for first root B |x2 -3000.00000000 _
'single precision: 7 |Modified formula for first root (single precision):
xlr = -2 *c / (b + d) B |x1 -0.00100000

FIGURE 3.13
Excel/VBA program to determine the roots of a quadratic.

EXAMPLE 3.9

Note that, as in the foregoing example, there are times where subtractive cancellation
can be circumvented by using a transformation. However, the only general remedy is to
employ extended precision.

Smearing. Smearing occurs whenever the individual terms in a summation are larger
than the summation itself. As in the following example, one case where this occurs is in se-
ries of mixed signs.

Evaluation of e* using Infinite Series

Problem Statement. The exponential function y = e is given by the infinite series
x? x8
=14+X+ — — 4 ...
y=1l+x+=+0+
Evaluate this function for x = 10 and x = —10, and be attentive to the problems of round-
off error.

Solution. Figure 3.14a gives an Excel/VBA program that uses the infinite series to
evaluate e*. The variable i is the number of terms in the series, term is the value of the

76

APPROXIMATIONS AND ROUND-OFF ERRORS

the sum are much larger than the final result of the sum. Furthermore, unlike the previous
case, the individual terms vary in sign. Thus, in effect we are adding and subtracting large
numbers (each with some small error) and placing great significance on the differences—
that is, subtractive cancellation. Thus, we can see that the culprit behind this example of
smearing is, in fact, subtractive cancellation. For such cases it is appropriate to seek some
other computational strategy. For example, one might try to computey = e asy = (e~1)*°.
Other than such a reformulation, the only general recourse is extended precision.

Inner Products. ~ As should be clear from the last sections, some infinite series are partic-
ularly prone to round-off error. Fortunately, the calculation of series is not one of the more
common operations in numerical methods. A far more ubiquitous manipulation is the
calculation of inner products, as in

n

Z Xi¥i = X1Y1 + X2Y2 + -+ + Xa¥n

i=1
This operation is very common, particularly in the solution of simultaneous linear alge-
braic equations. Such summations are prone to round-off error. Consequently, it is often
desirable to compute such summations in extended precision.

Although the foregoing sections should provide rules of thumb to mitigate round-off
error, they do not provide a direct means beyond trial and error to actually determine the
effect of such errors on a computation. In Chap. 4, we will introduce the Taylor series,

which will provide a mathematical approach for estimating these effects.

PROBLEMS

3.1 Convert the following base-2 numbers to base-10: (a) 1011001,
(b) 110.00101 and (c) 0.01011
3.2 Convert the following base-8 numbers to base 10: 71,563 and
3.14.
3.3 Compose your own program based on Fig. 3.11 and use it to
determine your computer’s machine epsilon.
3.4 In a fashion similar to that in Fig. 3.11, write a short program
to determine the smallest number, Xmin, used on the computer you
will be employing along with this book. Note that your computer
will be unable to reliably distinguish between zero and a quantity
that is smaller than this number.
3.5 The infinite series
11

f(n) = .21: 7
converges on a value of f(n) =*/90 as n approaches infinity.
Write a program in single precision to calculate f(n) for
n = 10,000 by computing the sum from i =1 to 10,000. Then
repeat the calculation but in reverse order—that is, from
i = 10,000 to 1 using increments of —1. In each case, compute the
true percent relative error. Explain the results.

3.6 Evaluate e~® using two approaches

x2 X3

e =1—-X+—— = +---
+2 3!+

and

1 1

x_ 1

¢ == x2 X3
14X — —
XSt

and compare with the true value of 6.737947 x 1073, Use 20 terms
to evaluate each series and compute true and approximate relative
errors as terms are added.
3.7 The derivative of f(x) = 1/(1 — 3x?) is given by
6x
(1 —3x2)2

Do you expect to have difficulties evaluating this function at
x = 0.577? Try it using 3- and 4-digit arithmetic with chopping.
3.8 (@) Evaluate the polynomial

y=x3—7x*+8x—-0.35

PROBLEMS

77

at x = 1.37. Use 3-digit arithmetic with chopping. Evaluate the
percent relative error.
(b) Repeat (a) but express y as

y=((xX—-7x+8x-0.35

Evaluate the error and compare with part (a).
3.9 Calculate the random access memory (RAM) in megabytes
necessary to store a multidimensional array that is 20 x 40 x 120.
Thisarray is double precision, and each value requires a 64-bit word.
Recall that a 64-bit word = 8 bytes and 1 kilobyte = 21° bytes.
Assume that the index starts at 1.
3.10 Determine the number of terms necessary to approximate cos x
to 8 significant figures using the Maclaurin series approximation
x2 x* xb x8

cosx =1 > +4! 6l +8!
Calculate the approximation using a value of x = 0.37. Write a
program to determine your result.

3.11 Use 5-digit arithmetic with chopping to determine the roots of
the following equation with Egs. (3.12) and (3.13)

x% — 5000.002x + 10

Compute percent relative errors for your results.

3.12 How can the machine epsilon be employed to formulate a
stopping criterion gs for your programs? Provide an example.

3.13 The “divide and average” method, an old-time method for ap-
proximating the square root of any positive number a, can be for-
mulated as

X +a/x
X =
2

Write a well-structured function to implement this algorithm based
on the algorithm outlined in Fig. 3.3.

78

4.1

Truncation Errors and
the Taylor Series

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, in Chap. 1 we approximated the derivative of ve-
locity of a falling parachutist by a finite-divided-difference equation of the form [Eq. (1.11)]

dv _ Av _ v(tizy) — () (41)
dt At tiy1— ¢

A truncation error was introduced into the numerical solution because the difference equa-
tion only approximates the true value of the derivative (recall Fig. 1.4). In order to gain
insight into the properties of such errors, we now turn to a mathematical formulation that
is used widely in numerical methods to express functions in an approximate fashion—the
Taylor series.

THE TAYLOR SERIES

Taylor’s theorem (Box 4.1) and its associated formula, the Taylor series, is of great value in
the study of numerical methods. In essence, the Taylor series provides a means to predict a
function value at one point in terms of the function value and its derivatives at another
point. In particular, the theorem states that any smooth function can be approximated as a
polynomial.

A useful way to gain insight into the Taylor series is to build it term by term. For
example, the first term in the series is

f(xit1) = f(xi) (4.2)

This relationship, called the zero-order approximation, indicates that the value of f at the
new point is the same as its value at the old point. This result makes intuitive sense because
if xj and xj, 1 are close to each other, it is likely that the new value is probably similar to the
old value.

Equation (4.2) provides a perfect estimate if the function being approximated is, in
fact, a constant. However, if the function changes at all over the interval, additional terms

4.1 THE TAYLOR SERIES

79

Box 4.1 Taylor's Theorem

Taylor’s Theorem

If the function f and its first n + 1 derivatives are continuous on an
interval containing a and x, then the value of the function at x is
given by

f’(a
f(x) =f@@) + f@x —a) + 2(,)(x —-a)’
®(a
] 3'()(x —a)’+
£
+ (a) x—a)"+ R, (B4.1.1)
where the remainder R, is defined as
R, = / &=t f“‘*“ (t) dt (B4.1.2)

where t = a dummy variable. Equation (B4.1.1) is called the Taylor
series or Taylor’s formula. If the remainder is omitted, the right side
of Eq. (B4.1.1) is the Taylor polynomial approximation to f (x). In
essence, the theorem states that any smooth function can be ap-
proximated as a polynomial.

Equation (B4.1.2) is but one way, called the integral form, by
which the remainder can be expressed. An alternative formulation
can be derived on the basis of the integral mean-value theorem.

First Theorem of Mean for Integrals
If the function g is continuous and integrable on an interval con-
taining a and x, then there exists a point & between a and x such that

/ gydt=g@E)(x —a) (B4.1.3)

In other words, this theorem states that the integral can be repre-
sented by an average value for the function g(&) times the interval
length x — a. Because the average must occur between the mini-
mum and maximum values for the interval, there is a point x = & at
which the function takes on the average value.

The first theorem is in fact a special case of a second mean-
value theorem for integrals.

Second Theorem of Mean for Integrals
If the functions g and h are continuous and integrable on an interval
containing a and x, and h does not change sign in the interval, then
there exists a point & between a and x such that

fx g(Hh(t) dt = g(&) /x h(t) dt (B4.1.4)

Thus, Eq. (B4.1.3) is equivalent to Eq. (B4.1.4) with h(t) = 1.
The second theorem can be applied to Eq. (B4.1.2) with

gty ="ty hit) = u ;lt)n

As tvaries from a to x, h(t) is continuous and does not change sign.
Therefore, if f"*1(t) is continuous, then the integral mean-value
theorem holds and

f (n+1) (%-)

7“] T (X — a)n+1

n=

This equation is referred to as the derivative or Lagrange form of
the remainder.

of the Taylor series are required to provide a better estimate. For example, the first-order
approximation is developed by adding another term to yield

f(xiz1) = f(x) + F X)) Xigr — Xi)

(4.3)

The additional first-order term consists of a slope f’(x;) multiplied by the distance between
Xj and X;j.1. Thus, the expression is now in the form of a straight line and is capable of pre-
dicting an increase or decrease of the function between x; and X; 1.

Although Eq. (4.3) can predict a change, it is exact only for a straight-line, or linear,
trend. Therefore, a second-order term is added to the series to capture some of the curva-
ture that the function might exhibit:

f(Xit1) = i) + T X)) Xipr — Xi) +

2(|)(Xi+l — x))? (4.4)

80

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.1

In a similar manner, additional terms can be included to develop the complete Taylor series
expansion:

f// i
f(xis1) = fXi) + PO XKirr — xi) + —2(:()(Xi+1 — %)
3) (y.) (y.
f 3EX') Xiz1 — X))+ + 7](nfxl) (Xiz1 — X)" + Ry (4.5)

Note that because Eqg. (4.5) is an infinite series, an equal sign replaces the approximate sign
that was used in Egs. (4.2) through (4.4). A remainder term is included to account for all
terms from n + 1 to infinity:

f(n+1)(g)

= m(xiﬂ —x)"** (4.6)

n
where the subscript n connotes that this is the remainder for the nth-order approximation
and & is a value of x that lies somewhere between x; and x; ;. The introduction of the £ is so
important that we will devote an entire section (Sec. 4.1.1) to its derivation. For the time
being, it is sufficient to recognize that there is such a value that provides an exact determi-
nation of the error.

It is often convenient to simplify the Taylor series by defining a step size h = Xj;1 — X;
and expressing Eq. (4.5) as

£/ @ (x: f O (x:
{011 = 1000 + £/00h + 2?4 T g T Ky g
4.7)
where the remainder term is now
(n+1)
R, = 7@ o (4.8)

T (41!

Taylor Series Approximation of a Polynomial

Problem Statement. Use zero- through fourth-order Taylor series expansions to approx-
imate the function

f(x) = —0.1x* — 0.15x® — 0.5x% — 0.25x + 1.2
from xj = 0 with h = 1. That is, predict the function’s value at xj;; = 1.

Solution. Because we are dealing with a known function, we can compute values for
f(x) between 0 and 1. The results (Fig. 4.1) indicate that the function starts at f(0) = 1.2
and then curves downward to f(1) = 0.2. Thus, the true value that we are trying to predict
is 0.2.

The Taylor series approximation with n = 0 is [Eq. (4.2)]

f(Xi+1) >~ 12

4.1 THE TAYLOR SERIES 81

f(x)
flx) Zero order ® fix .) =f(x)
i+ 1/ i
1.0 — f(x;, 1) = f(x) + f{x)h
0.5 — f(x;, 1) = flx) +f’(xi)h+¥h2
f(Xi+ 1)
0 ' :
X =0 Xipq=1 2
h
FIGURE 4.1

The approximation of flx) = —=0.1x* = 0.15x% — 0.5x? — 0.25x+ 1.2 at x = 1 by zeroorder,
firstorder, and second-order Taylor series expansions.

Thus, as in Fig. 4.1, the zero-order approximation is a constant. Using this formulation re-
sults in a truncation error [recall Eq. (3.2)] of

Et=02-12=-10

atx = 1.
For n = 1, the first derivative must be determined and evaluated at x = 0:

f/(0) = —0.4(0.0)® — 0.45(0.0)2 — 1.0(0.0) — 0.25 = —0.25
Therefore, the first-order approximation is [Eq. (4.3)]

f(Xiz1) ~ 1.2 — 0.25h

which can be used to compute f(1) = 0.95. Consequently, the approximation begins to
capture the downward trajectory of the function in the form of a sloping straight line
(Fig. 4.1). This results in a reduction of the truncation error to

Ei =0.2-0.95=-0.75

For n = 2, the second derivative is evaluated at x = O:

f7(0) = —1.2(0.0)> — 0.9(0.0) — 1.0 = —1.0
Therefore, according to Eq. (4.4),

f(Xi41) ~ 1.2 — 0.25h — 0.5h?

and substituting h = 1, f(1) = 0.45. The inclusion of the second derivative now adds some
downward curvature resulting in an improved estimate, as seen in Fig. 4.1. The truncation
error is reduced further to 0.2 — 0.45 = —0.25.

82

TRUNCATION ERRORS AND THE TAYLOR SERIES

Additional terms would improve the approximation even more. In fact, the inclusion
of the third and the fourth derivatives results in exactly the same equation we started with:

f(x) = 1.2 — 0.25h — 0.5h2 — 0.15h — 0.1h*

where the remainder term is

Rs =

because the fifth derivative of a fourth-order polynomial is zero. Consequently, the Taylor
series expansion to the fourth derivative yields an exact estimate at xj,; = 1:

f(1) = 1.2 — 0.25(1) — 0.5(1)% — 0.15(1)3 — 0.1(1)* = 0.2

In general, the nth-order Taylor series expansion will be exact for an nth-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.2. Only if an infinite number of terms are added will the series
yield an exact result.

Although the above is true, the practical value of Taylor series expansions is that, in
most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are re-
quired to get “close enough” is based on the remainder term of the expansion. Recall that
the remainder term is of the general form of Eq. (4.8). This relationship has two major
drawbacks. First, & is not known exactly but merely lies somewhere between x; and Xi 1.
Second, to evaluate Eq. (4.8), we need to determine the (n + 1)th derivative of f(x). To do
this, we need to know f(x). However, if we knew f(x), there would be no need to perform
the Taylor series expansion in the present context!

Despite this dilemma, Eq. (4.8) is still useful for gaining insight into truncation errors.
This is because we do have control over the term h in the equation. In other words, we can
choose how far away from x we want to evaluate f(x), and we can control the number of
terms we include in the expansion. Consequently, Eqg. (4.8) is usually expressed as

Ry, = O(h")

where the nomenclature O(h"*) means that the truncation error is of the order of h"*!,
That is, the error is proportional to the step size h raised to the (n + I)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply h™*1 it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h), halving the step size
will halve the error. On the other hand, if the error is O(h?), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate estimate. This property is illustrated by
the following example.

4.1 THE TAYLOR SERIES 83

EXAMPLE 4.2

Use of Taylor Series Expansion to Approximate a Function with an Infinite Number
of Derivatives

Problem Statement. Use Taylor series expansions with n=0 to 6 to approximate
f(x) = cosx at xjy1 = /3 on the basis of the value of f(x) and its derivatives at x; =
7 /4. Note that this means thath = 7/3 — /4 = 7 /12.

Solution. As with Example 4.1, our knowledge of the true function means that we can
determine the correct value f(r/3) = 0.5.
The zero-order approximation is [Eq. (4.3)]

f(%) ~ cos (%) — 0.707106781

which represents a percent relative error of

_ 0.5 0.707106781

& = 05 100% = —41.4%

For the first-order approximation, we add the first derivative term where f'(x) = —sin x:

; (%) ~ cos (%) _sin (%)(%) — 0.521986659

which has g, = —4.40 percent.
For the second-order approximation, we add the second derivative term where
f’(x) = —cosx:

TN b4 2 AVYE Cos (/4) s m\2
f(a) —005(4) S'”(4)(12> 2 (12) = 0497754491
with e = 0.449 percent. Thus, the inclusion of additional terms results in an improved
estimate.

The process can be continued and the results listed, as in Table 4.1. Notice that the de-
rivatives never go to zero as was the case with the polynomial in Example 4.1. Therefore,
each additional term results in some improvement in the estimate. However, also notice
how most of the improvement comes with the initial terms. For this case, by the time we

TABLE 4.1 Taylor series approximation of f(x) = cos x at x;;1 = 7/ 3 using a base point
of 7/ 4. Values are shown for various orders (n) of approximation.

Order n f(n)(x) f(x/3) &
0 cos x 0.707106781 —-41.4
1 —sin x 0.521986659 4.4
2 —Cos x 0.497754491 0.449
3 sin x 0.499869147 2.62 x 1072
4 cos x 0.500007551 —1.51 x 1073
5 —sin x 0.500000304 —6.08 x 107?
6 —Cos X 0.499999988 2.44 x 107°

84

TRUNCATION ERRORS AND THE TAYLOR SERIES

have added the third-order term, the error is reduced to 2.62 x 10~2 percent, which means
that we have attained 99.9738 percent of the true value. Consequently, although the addi-
tion of more terms will reduce the error further, the improvement becomes negligible.

4.1.1 The Remainder for the Taylor Series Expansion

Before demonstrating how the Taylor series is actually used to estimate numerical errors, we
must explain why we included the argument & in Eq. (4.8). A mathematical derivation is pre-
sented in Box 4.1. We will now develop an alternative exposition based on a somewhat more
visual interpretation. Then we can extend this specific case to the more general formulation.

Suppose that we truncated the Taylor series expansion [Eq. (4.7)] after the zero-order
term to yield

f(Xiz1) = f(x)

A visual depiction of this zero-order prediction is shown in Fig. 4.2. The remainder, or
error, of this prediction, which is also shown in the illustration, consists of the infinite se-
ries of terms that were truncated:

f”(Xi) h2 + f(3) (Xi) h3

2! 3!

Ro = f'(xi)h + + -

It is obviously inconvenient to deal with the remainder in this infinite series format.
One simplification might be to truncate the remainder itself, as in

Ro = f(x)h 4.9)

FIGURE 4.2
Graphical depiction of a zero-order Taylor series prediction and remainder.

f(x)

Zero-order prediction

4.1 THE TAYLOR SERIES 85

Although, as stated in the previous section, lower-order derivatives usually account for a
greater share of the remainder than the higher-order terms, this result is still inexact
because of the neglected second- and higher-order terms. This “inexactness” is implied by
the approximate equality symbol (=) employed in Eq. (4.9).

An alternative simplification that transforms the approximation into an equivalence is
based on a graphical insight. As in Fig. 4.3, the derivative mean-value theorem states that
if a function f(x) and its first derivative are continuous over an interval from x; to X;;1, then
there exists at least one point on the function that has a slope, designated by f’(§), that is
parallel to the line joining f(x;) and f(xij;1). The parameter & marks the x value where this
slope occurs (Fig. 4.3). A physical illustration of this theorem is that, if you travel between
two points with an average velocity, there will be at least one moment during the course of
the trip when you will be moving at that average velocity.

By invoking this theorem it is simple to realize that, as illustrated in Fig. 4.3, the slope
f'(&) is equal to the rise Ro divided by the run h, or

Ro
f/ = —
(é) H
which can be rearranged to give

Ro = f(&)h (4.10)
Thus, we have derived the zero-order version of Eq. (4.8). The higher-order versions are
merely a logical extension of the reasoning used to derive Eq. (4.10). The first-order version is

(&) (4.11)
2!

R, = h?

FIGURE 4.3

Graphical depiction of the derivative mean-value theorem.

f(x)

Slope = f'(¢)
p f\

86

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.3

For this case, the value of & conforms to the x value corresponding to the second derivative
that makes Eq. (4.11) exact. Similar higher-order versions can be developed from Eq. (4.8).

4.1.2 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors through-
out this book, it may not be clear to you how the expansion can actually be applied to nu-
merical methods. In fact, we have already done so in our example of the falling parachutist.
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time. That is, we were interested in determining v(t). As specified by Eq. (4.5), v(t) can
be expanded in a Taylor series:

v(tive) = v(t) +v't) (i —) + UZ—(Iti)(ti+l —t)% 4+ Ry (4.12)

Now let us truncate the series after the first derivative term:
v(tiyr) = v(t) + v () iy —) + Ry (4.13)

Equation (4.13) can be solved for
v(tiz1) — v(t) R

VO = T TRt
i+1 i i+1 L (41 4)
First-order Truncation
approximation error

The first part of Eq. (4.14) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Egs. (4.6) and (4.14) yields

R1 v"(§)
= (b — 1 .
ti+1 — ti 21 (i+1 I) (4 15)
or
R
L — Ot —) (4.16)
tiqi— ¢

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.14)] has a trunca-
tion error of order tj.; — ti. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.
The Effect of Nonlinearity and Step Size on the Taylor Series Approximation
Problem Statement. Figure 4.4 is a plot of the function

f(x) = xM (E4.3.1)

form =1, 2, 3, and 4 over the range from x = 1 to 2. Notice that for m = 1 the function is
linear, and as m increases, more curvature or nonlinearity is introduced into the function.

4.1 THE TAYLOR SERIES 87

f(x)

10 —

FIGURE 4.4
Plot of the function f(x) = x" for m =1, 2, 3, and 4. Notice that the function becomes more
nonlinear as m increases.

Employ the first-order Taylor series to approximate this function for various values of the
exponent m and the step size h.

Solution. Equation (E4.3.1) can be approximated by a first-order Taylor series expansion,
asin
f(Xit1) = fxi) +mx""th (E4.3.2)
which has a remainder
R, — fxi),, O, 5 FDX)
LT 3l 41

First, we can examine how the approximation performs as m increases—that is, as the
function becomes more nonlinear. For m = 1, the actual value of the functionatx = 2 is 2.

h4_|_...

88

TRUNCATION ERRORS AND THE TAYLOR SERIES

The Taylor series yields
f(Q)=1+11) =2
and
Ri=0

The remainder is zero because the second and higher derivatives of a linear function are
zero. Thus, as expected, the first-order Taylor series expansion is perfect when the under-
lying function is linear.

For m = 2, the actual value is f(2) = 22 = 4. The first-order Taylor series approxima-
tion is

f2)=14+21)=3
and

Ri=312+0+0+--=1

Thus, because the function is a parabola, the straight-line approximation results in a dis-
crepancy. Note that the remainder is determined exactly.
For m = 3, the actual value is f(2) = 2% = 8. The Taylor series approximation is

f2)=1+31)%() =4
and
Ri=51%+81°+0+0+---=4

Again, there is a discrepancy that can be determined exactly from the Taylor series.
For m = 4, the actual value is f(2) = 2* = 16. The Taylor series approximation is

f(2) =14+ 4(1)31) =5
and
Ri=212+21)°+420*+04+0+--- =11

On the basis of these four cases, we observe that R; increases as the function becomes
more nonlinear. Furthermore, R; accounts exactly for the discrepancy. This is because
Eq. (E4.3.1) is a simple monomial with a finite number of derivatives. This permits a com-
plete determination of the Taylor series remainder.

Next, we will examine Eq. (E4.3.2) for the case m = 4 and observe how R; changes as
the step size h is varied. For m = 4, Eq. (E4.3.2) is

f(x +h) = f(x) +4x*h

If x =1, f(1) = 1 and this equation can be expressed as
f(1+h)=1+4h

with a remainder of

R; = 6h? 4 4h® + h*

4.1 THE TAYLOR SERIES 89

0.1

[Slope| =2

0.01 —

0.001 ' '
1 0.1 0.01 h

FIGURE 4.5

logrlog plot of the remainder R; of the firstorder Taylor series approximation of the function
f(x) = x* versus step size h. Aline with a slope of 2 is also shown to indicate that as h
decreases, the error becomes proportional to h?.

TABLE 4.2 Comparison of the exact value of the function f(x) = x* with the firstorder
Taylor series approximation. Both the function and the approximation are
evaluated at x + h, where x=1.

First-Order

h True Approximation R,
1 16 5 11
0.5 5.0625 3 2.0625
0.25 2.441406 2 0.441406
0.125 1.601807 1.5 0.101807
0.0625 1.274429 1.25 0.024429
0.03125 1.130982 1.125 0.005982
0.015625 1.063980 1.0625 0.001480

This leads to the conclusion that the discrepancy will decrease as h is reduced. Also, at suf-
ficiently small values of h, the error should become proportional to h% That is, as h is
halved, the error will be quartered. This behavior is confirmed by Table 4.2 and Fig. 4.5.
Thus, we conclude that the error of the first-order Taylor series approximation de-
creases as m approaches 1 and as h decreases. Intuitively, this means that the Taylor series

90

TRUNCATION ERRORS AND THE TAYLOR SERIES

becomes more accurate when the function we are approximating becomes more like a
straight line over the interval of interest. This can be accomplished either by reducing the
size of the interval or by “straightening” the function by reducing m. Obviously, the latter
option is usually not available in the real world because the functions we analyze are typi-
cally dictated by the physical problem context. Consequently, we do not have control of
their lack of linearity, and our only recourse is reducing the step size or including additional
terms in the Taylor series expansion.

4.1.3 Numerical Differentiation

Equation (4.14) is given a formal label in numerical methods—it is called a finite divided
difference. It can be represented generally as

f(Xiz1) — f(Xi)
Xi+1 — Xi

f(xi) = + O(Xjy1 — Xi) (4.17)

or

fixi) = ATf' + O(h) (4.18)
where A fj is referred to as the first forward difference and h is called the step size, that is,
the length of the interval over which the approximation is made. It is termed a “forward”
difference because it utilizes data at i and i + 1 to estimate the derivative (Fig. 4.6a). The
entire term A f/h is referred to as a first finite divided difference.

This forward divided difference is but one of many that can be developed from the
Taylor series to approximate derivatives numerically. For example, backward and centered
difference approximations of the first derivative can be developed in a fashion similar to
the derivation of Eq. (4.14). The former utilizes values at x;_; and x; (Fig. 4.6b), whereas
the latter uses values that are equally spaced around the point at which the derivative is es-
timated (Fig. 4.6¢). More accurate approximations of the first derivative can be developed
by including higher-order terms of the Taylor series. Finally, all the above versions can also
be developed for second, third, and higher derivatives. The following sections provide
brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present value, as in

£
f(xi—1) = f(x) — f(xph + 2(,')h2 - (4.19)
Truncating this equation after the first derivative and rearranging yields
f(x) — f(xi— v f
Fx) = Xi) — Txi-1) _ VHh 4.20)

h h

where the error is O(h), and V f is referred to as the first backward difference. See Fig. 4.6b
for a graphical representation.

3.4 ROUND-OFF ERRORS

75

(a) Program
Option Explicit

Sub fig0314Q)
Dim term As Single, test As Single
Dim sum As Single, x As Single
Dim i As Integer
i = 0: term = 1#: sum = 1#: test = O#
Sheets(''sheetl™) _Select
Range(*'bl') .Select
x = ActiveCell _Value
Range("'a3:c1003") .ClearContents
Range("'a3") .Select
Do
IT sum = test Then Exit Do
ActiveCell_Value = i
ActiveCell .Offset(0, 1).Select
ActiveCell.Value = term
ActiveCell .Offset(0, 1).Select
ActiveCell _Value = sum
ActiveCell .Offset(l, -2).Select
i=1+1
test = sum
term = x M i / _
Application.WorksheetFunction.Fact(i)
sum = sum + term

Loop
ActiveCell .Offset(0, 1).Select
ActiveCell.vValue = "Exact value = "

ActiveCell .Offset(0, 1).Select
ActiveCell .Value = Exp(Xx)
End Sub

FIGURE 3.14

(b) Eval uation of e?°

—~

[a) An Excel /VBA program to evaluate €* using an infinite series. (b) Evaluation of e*.

(c) Evaluation of e,

A] B | C |
1] | 10 |
| 2 | il term| sum|
=N ol 1.000000 1.000000|
|4 1 10.000000 11.000000 |
15 | 2| 50.000000 61.000000
| B | 3 166 6REEE7 2 227 BREE72
| 7| 4 416 BBEESE B44.333313
L8 | 5 §33.333313] 1477 BERGZG
130 | 27 9.183690E-02) Z2026.416016
131 28| 3.2798009E-0Z| 22026.445219)
|32 | 28| 1.130996E-02| 22026 460535
E834 30| 3.769968E-03| 22026 464544
|34 | | 12IB125E-03] 22026 466797 |
135 | Exact value = | 22026 465795
c) Evaluation of el°

A B | g |
1] | 10 :
| 2 | il term sum |
=N 0 1.000000 1.000000 |
EN 11 -10.000000 -5.000000]
| &8 | 2| 50.000000/ 41.000000
|6 | 3 -166.666672 -125.66667 2
L7 4 416 666656 251.000000 |
L8 | 5 -B33333313] -542.333313
| 44 | 41 -2.989311E-09] 1.103359E-04
45	42 7IT7407E-10) 1.103366E-04
46	43 -1.655211E-10) 1.103365E-04
47	44 37E1843E-11) 1.103365E-04
48	45 -B.359651E-12) 1.103365E-04
49	

current term added to the series, and sum is the accumulative value of the series. The vari-
able test is the preceding accumulative value of the series prior to adding term. The series
is terminated when the computer cannot detect the difference between test and sum.
Figure 3.14b shows the results of running the program for x = 10. Note that this case
is completely satisfactory. The final result is achieved in 31 terms with the series identical
to the library function value within seven significant figures.
Figure 3.14c shows similar results for x = —10. However, for this case, the results of
the series calculation are not even the same sign as the true result. As a matter of fact, the
negative results are open to serious question because €* can never be less than zero. The
problem here is caused by round-off error. Note that many of the terms that make up

4.1 THE TAYLOR SERIES 91

f(x)

f(x)

f(x)

i+1

FIGURE 4.6
Craphical depiction of (a) forward, (b} backward, and (c] centered finite-divided-difference
approximations of the first derivative.

92

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.4

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

0 2

f(xiy1) = (%) + f'(xp)h + o

+ (4.21)

to yield

Mh3+...

f(Xiy1) = f(Xi—1) +2F(xi)h + 3

which can be solved for

f(Xit1) — f(Xi—1) _ f(3)(xi)h2 ...

fi(xi) = oh 5

or

f(Xiz1) — f(Xi—1)

fi(x) = o

—0(h? (4.22)

Equation (4.22) is a centered difference representation of the first derivative. Notice that the
truncation error is of the order of h? in contrast to the forward and backward approximations
that were of the order of h. Consequently, the Taylor series analysis yields the practical in-
formation that the centered difference is a more accurate representation of the derivative
(Fig. 4.6c). For example, if we halve the step size using a forward or backward difference,
we would approximately halve the truncation error, whereas for the central difference, the
error would be quartered.

Finite-Divided-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and
a centered difference approximation of O(h?) to estimate the first derivative of

f(x) = —0.1x* — 0.15x3 — 0.5x? — 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the
derivative can be calculated directly as

f(x) = —0.4x% — 0.45x% — 1.0x — 0.25
and can be used to compute the true value as f'(0.5) = —0.9125.
Solution. For h = 0.5, the function can be employed to determine
Xi_1=0 f(xi_1) =1.2

Xi =05 f(xi) =0.925
Xi+l = 10 f(Xi+1) = 02
These values can be used to compute the forward divided difference [Eq. (4.17)],
0.2 —0.925

1(05) = —"Fz=— = -145 |at| =58.9%

4.1 THE TAYLOR SERIES 93

the backward divided difference [Eq. (4.20)],

0.925-1.2
f05) = ——— " =-055 let| = 39.7%
0.5
and the centered divided difference [Eq. (4.22)],
02-12
f10.5) = —0 - -1.0 let] = 9.6%

For h = 0.25,

Xji_1 = 0.25 f(xj_1) = 1.10351563
Xxi =05 f(xj) =0.925
Xjy1 = 0.75 f(xj+1) = 0.63632813
which can be used to compute the forward divided difference,
0.63632813 — 0.925

£10.5) = 035 — 1155 |g| = 26.5%

the backward divided difference,

0.925 — 1.10351563
f0.5) = 025 = —-0.714 let| = 21.7%

and the centered divided difference,

0.63632813 — 1.10351563
£10.5) = 0 — 0934 || =2.4%

For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference.

Finite Difference Approximations of Higher Derivatives. Besides first derivatives, the
Taylor series expansion can be used to derive numerical estimates of higher derivatives. To
do this, we write a forward Taylor series expansion for f(Xi,) in terms of f(x;):

f"(xi)

- (2h)* +- - (4.23)

f(Xis2) = f(x) + f(xi)(2h) +

Equation (4.21) can be multiplied by 2 and subtracted from Eq. (4.23) to give
f(Xit2) = 2f(Xit1) = — f(xi) + F(xi)h? + - -
which can be solved for

f(Xig2) — 2f(Xiz1) + (X))

f'(xi) = H2

+ O(h) (4.24)

94

TRUNCATION ERRORS AND THE TAYLOR SERIES

4.2

This relationship is called the second forward finite divided difference. Similar manipula-
tions can be employed to derive a backward version

f(xi) — 2f(Xi—1) + f(Xi—2)

f(xi) = 2 +0()
and a centered version
Fix) = f(Xig1) — 2F(xi) + f(Xi—1) oM

h2

As was the case with the first-derivative approximations, the centered case is more accu-
rate. Notice also that the centered version can be alternatively expressed as

fixip) — fOi) fxi) — f(xiz1)

h h
h

f”(Xi) =

Thus, just as the second derivative is a derivative of a derivative, the second divided dif-
ference approximation is a difference of two first divided differences.

We will return to the topic of numerical differentiation in Chap. 23. We have intro-
duced you to the topic at this point because it is a very good example of why the Taylor
series is important in numerical methods. In addition, several of the formulas introduced in
this section will be employed prior to Chap. 23.

ERROR PROPAGATION

The purpose of this section is to study how errors in numbers can propagate through math-
ematical functions. For example, if we multiply two numbers that have errors, we would
like to estimate the error in the product.

4.2.1 Functions of a Single Variable

Suppose that we have a function f(x) that is dependent on a single independent variable x.
Assume that X is an approximation of x. We, therefore, would like to assess the effect of
the discrepancy between x and X on the value of the function. That is, we would like to
estimate

AfS) =100 — F(0OI

The problem with evaluating Af(X) is that f(x) is unknown because x is unknown. We can
overcome this difficulty if X is close to x and f(X) is continuous and differentiable. If these
conditions hold, a Taylor series can be employed to compute f(x) near f(X), as in

f”()?)

_~2 ...
> X=X+

fx) = f(X) + F(R)(X — %) +

Dropping the second- and higher-order terms and rearranging yields

f(x) — f(X) = ()X — %)

4.2 ERROR PROPAGATION 95

FIGURE 4.7
Craphical depiction of first-
order error propagation.

f(x)

True error
[f(R)|AX
Estimated error

S R, e ——

|
|
|
|
|
|
|
|
|
|
X

EXAMPLE 4.5

or
Af(R) = | f/(R)|AX (4.25)

where Af(X) = |f(x) — f(X)| represents an estimate of the error of the function and AX =
|x — X| represents an estimate of the error of x. Equation (4.25) provides the capability to
approximate the error in f(x) given the derivative of a function and an estimate of the error
in the independent variable. Figure 4.7 is a graphical illustration of the operation.

Error Propagation in a Function of a Single Variable

Problem Statement. Given a value of X = 2.5 with an error of AX = 0.01, estimate the
resulting error in the function, f(x) = x3.

Solution. Using Eq. (4.25),
Af(X) = 3(2.5)%(0.01) = 0.1875
Because f(2.5) = 15.625, we predict that
f(2.5) = 15.625 4+ 0.1875

or that the true value lies between 15.4375 and 15.8125. In fact, if x were actually 2.49, the
function could be evaluated as 15.4382, and if x were 2.51, it would be 15.8132. For this
case, the first-order error analysis provides a fairly close estimate of the true error.

96

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.6

4.2.2 Functions of More than One Variable

The foregoing approach can be generalized to functions that are dependent on more than
one independent variable. This is accomplished with a multivariable version of the Taylor
series. For example, if we have a function of two independent variables u and v, the Taylor
series can be written as

of of
f(Uite, vigr) = f(Ui»Ui)‘f‘%(UiH Ui)+ (U|+1—U|)
1[a%f 82f
+ 21 [W(le ui)? + 2 (U|+1 Ui)(Vit1 — vi)
2
MFT
where all partial derivatives are evaluated at the base point i. If all second-order and higher
terms are dropped, Eqg. (4.26) can be solved for
of of
Af(0,0) = |—|A —
(@, v) 'a ’ U+ ™

(Vig1 — Ui)z] +o (4.26)

Av

where Al and Av = estimates of the errors in u and v, respectively.

For n independent variables X3, Xo, . . ., Xy having errors AXy, AXy, ..., AXy, the fol-
lowing general relationship holds:
L . of of . of .
Af(Xq, Ko, ..., Xp) = ARy + |— | AR + - -+ + | — | AKX, (4.27)
3 X1 0X2 dXn

Error Propagation in a Multivariable Function

Problem Statement. The deflection y of the top of a sailboat mast is
B FL*
~ 8EI

where F = a uniform side loading (N/m), L = height (m), E = the modulus of elasticity
(N/m?), and | = the moment of inertia (m?). Estimate the error in y given the following data:

F = 750 N/m AF =30N/m
L=9m AL =0.03m
E = 7.5 x 10° N/m? AE =5 x 10" N/m?
I = 0.0005 m* AT = 0.000005 m*

Solution. Employing Eq. (4.27) gives
Ay(F, L, E, |)_'— AF+‘— AL+‘— AE+‘ ‘ AT

or

- s . -
Ay(FLEI)—TAF—i- — AL+ AE + —— Al
8E| 2E

4.2 ERROR PROPAGATION 97

Substituting the appropriate values gives
Ay = 0.006561 + 0.002187 + 0.001094 + 0.00164 = 0.011482

Therefore, y = 0.164025 + 0.011482. In other words, y is between 0.152543 and
0.175507 m. The validity of these estimates can be verified by substituting the extreme val-
ues for the variables into the equation to generate an exact minimum of

720(8.97)%

in = —0.152818
Ymin 8(7.55 x 109)0.000505

and

780(9.03)*
Ymax =
8(7.45 x 109)0.000495

Thus, the first-order estimates are reasonably close to the exact values.

=0.175790

Equation (4.27) can be employed to define error propagation relationships for com-
mon mathematical operations. The results are summarized in Table 4.3. We will leave the
derivation of these formulas as a homework exercise.

4.2.3 Stability and Condition

The condition of a mathematical problem relates to its sensitivity to changes in its input
values. We say that a computation is numerically unstable if the uncertainty of the input
values is grossly magnified by the numerical method.

These ideas can be studied using a first-order Taylor series

f(x) = f(X) + F(X)(x —X)
This relationship can be employed to estimate the relative error of f(x) as in

fo0) — f®) L PO —%)
f(x) B f(X)

The relative error of x is given by

X=X

TABLE 4.3 Estimated error bounds associated with
common mathematical operations using
inexact numbers G and V.

Operation Estimated Error
Addition Alo+) AT+ AV
Subtraction Alg —) AT+ AV
Multiplication Alo x 7) [l AV + 1V1AD
Division A(%> l6lAV 4 1V1AD

[v12

98

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.7

A condition number can be defined as the ratio of these relative errors
X f1(X)

f(X)
The condition number provides a measure of the extent to which an uncertainty in x is mag-
nified by f(x). A value of 1 tells us that the function’s relative error is identical to the rela-
tive error in x. A value greater than 1 tells us that the relative error is amplified, whereas a
value less than 1 tells us that it is attenuated. Functions with very large values are said to be

ill-conditioned. Any combination of factors in Eq. (4.28) that increases the numerical value
of the condition number will tend to magnify uncertainties in the computation of f(x).

Condition number =

(4.28)

Condition Number

Problem Statement. Compute and interpret the condition number for

- b b
f(x) =tanx forx = 2 + 0'1<§)

f(x) =tanx forx = % + 0.0l(%)
Solution. The condition number is computed as
%(1/ cos? x)

tan X

Condition number =

For X = /2 4 0.1(rr/2),
1.7279(40.86) _ 112
—6.314

Thus, the function is ill-conditioned. For X = 7/2 + 0.01(r/2), the situation is even
WOrse:

Condition number =

1.5865(4053)
———— =-101

—63.66
For this case, the major cause of ill conditioning appears to be the derivative. This makes

sense because in the vicinity of w/2, the tangent approaches both positive and negative
infinity.

Condition number =

4.3

TOTAL NUMERICAL ERROR

The total numerical error is the summation of the truncation and round-off errors. In gen-
eral, the only way to minimize round-off errors is to increase the number of significant
figures of the computer. Further, we have noted that round-off error will increase due to
subtractive cancellation or due to an increase in the number of computations in an analysis.
In contrast, Example 4.4 demonstrated that the truncation error can be reduced by decreas-
ing the step size. Because a decrease in step size can lead to subtractive cancellation or to
an increase in computations, the truncation errors are decreased as the round-off errors are
increased. Therefore, we are faced by the following dilemma: The strategy for decreasing

4.3 TOTAL NUMERICAL ERROR 99

Point of
diminishing
returns

log error

log step size

FIGURE 4.8

A graphical depiction of the frade-off between round-off and truncation error that somefimes
comes info play in the course of a numerical method. The point of diminishing returns is shown,
where round-off error begins to negate the benefits of step-size reduction.

one component of the total error leads to an increase of the other component. In a compu-
tation, we could conceivably decrease the step size to minimize truncation errors only to
discover that in doing so, the round-off error begins to dominate the solution and the total
error grows! Thus, our remedy becomes our problem (Fig. 4.8). One challenge that we face
is to determine an appropriate step size for a particular computation. We would like to
choose a large step size in order to decrease the amount of calculations and round-off
errors without incurring the penalty of a large truncation error. If the total error is as shown
in Fig. 4.8, the challenge is to identify the point of diminishing returns where round-off
error begins to negate the benefits of step-size reduction.

In actual cases, however, such situations are relatively uncommon because most
computers carry enough significant figures that round-off errors do not predominate.
Nevertheless, they sometimes do occur and suggest a sort of “numerical uncertainty prin-
ciple” that places an absolute limit on the accuracy that may be obtained using certain com-
puterized numerical methods. We explore such a case in the following section.

4.3.1 Error Analysis of Numerical Differentiation

As described in the Sec. 4.1.3, a centered difference approximation of the first derivative

can be written as (Eq. 4.22):

fxiv) — f(xic) f(3)(.§)h2
2h 6

True Finite-difference Truncation
value approximation error

f'(xi) = (4.29)

100

TRUNCATION ERRORS AND THE TAYLOR SERIES

EXAMPLE 4.8

Thus, if the two function values in the numerator of the finite-difference approximation
have no round-off error, the only error is due to truncation.

However, because we are using digital computers, the function values do include
round-off error as in

f(xi_1) = f(xi_1) +ei1

f(Xir1) = f(Xit1) + i
where the f’s are the rounded function values and the e’s are the associated round-off er-
rors. Substituting these values into Eq. (4.29) gives

Foxign) — f(xio) L f(3)(§)h2

f'(xj) =

i) 2h 2h 6
True Finite-difference Round-off ~ Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a round-off

error which increases with step size and a truncation error that decreases with step size.
Assuming that the absolute value of each component of the round-off error has an

upper bound of ¢, the maximum possible value of the difference ej 1 — e; will be 2¢. Fur-

ther, assume that the third derivative has a maximum absolute value of M. An upper bound

on the absolute value of the total error can therefore be represented as

fxiv) = Fi-) | _ n h*m (4.30)

&
Total error = oh =y 5

f/(xi) —

An optimal step size can be determined by differentiating Eq. (4.30), setting the result
equal to zero and solving for

3¢
hopt = 1 Vi (4.31)

Round-off and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
0(h?) to estimate the first derivative of the following function at x = 0.5,

f(x) = —0.1x* — 0.15x® — 0.5x% — 0.25x + 1.2

Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how round-off becomes dominant as the step size is
reduced. Relate your results to Eq. (4.31). Recall that the true value of the derivative
is —0.9125.

Solution. We can develop a program to perform the computations and plot the results.
For the present example, we have done this with a MATLAB M-file. Notice that we pass
both the function and its analytical derivative as arguments. In addition, the function
generates a plot of the results.

4.3 TOTAL NUMERICAL ERROR 101

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(Ffunc(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));
for i=2:n
h=h/10;
H(i)=h;
D(1)=(Ffunc(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(i));

end
L=[H" D" E"]";
fprintf(” step size finite difference true error\n-®);

fprintf("%14.10F %16.14F %16.13F\n",L);
loglog(H,E) ,xlabel ("Step Size"),ylabel("Error™)
title("Plot of Error Versus Step Size")

format short

The M-file can then be run using the following commands:

>> F=0(x) -0.1*x"4-0.15*x"3-0.5*x"2-0.25*x+1.2;
>> df=@(x) -0.4*x"3-0.45*x"2-x-0.25;
>> diffex(ff,df,0.5,11)

When the function is run, the following numeric output is generated along with the plot
(Fig. 4.9):

step size finite difference true error

1.0000000000 -1.26250000000000 0.3500000000000
0.1000000000 -0.91600000000000 0.0035000000000
0.0100000000 -0.91253500000000 0.0000350000000
0.0010000000 -0.91250035000001 0.0000003500000
0.0001000000 -0.91250000349985 0.0000000034998
0.0000100000 -0.91250000003318 0.0000000000332
0.0000010000 -0.91250000000542 0.0000000000054
0.0000001000 -0.91249999945031 0.0000000005497
0.0000000100 -0.91250000333609 0.0000000033361
0.0000000010 -0.91250001998944 0.0000000199894
0.0000000001 -0.91250007550059 0.0000000755006

The results are as expected. At first, round-off is minimal and the estimate is dominated by
truncation error. Hence, as in Eq. (4.30), the total error drops by a factor of 100 each time
we divide the step by 10. However, starting at h = 0.0001, we see round-off error begin to
creep in and erode the rate at which the error diminishes. A minimum error is reached at
h = 10-%. Beyond this point, the error increases as round-off dominates.

Because we are dealing with an easily differentiable function, we can also investigate
whether these results are consistent with Eq. (4.31). First, we can estimate M by evaluating
the function’s third derivative as

M = |f3(0.5)| = | —2.4(0.5) — 0.9] = 2.1

102

TRUNCATION ERRORS AND THE TAYLOR SERIES

Plot of error versus step size

100~

1072

107

106

Error

1078

10—10

10-12 | | | | J
10710 1078 1076 10 1072 107°
Step size

FIGURE 4.9
Plot of error versus sfep size.

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of the
upper bound on round-off would be about £ = 0.5 X 106, Substituting these values into
Eq. (4.31) gives

3(05 x 10-16
hopt = / 305 x 107%) ;1) _43x10°°

which is on the same order as the result of 1 x 10~8 obtained with our computer program.

4.3.2 Control of Numerical Errors

For most practical cases, we do not know the exact error associated with numerical meth-
ods. The exception, of course, is when we have obtained the exact solution that makes our
numerical approximations unnecessary. Therefore, for most engineering applications we
must settle for some estimate of the error in our calculations.

There are no systematic and general approaches to evaluating numerical errors for all
problems. In many cases error estimates are based on the experience and judgment of the
engineer.

Although error analysis is to a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and foremost, avoid subtracting two nearly
equal numbers. Loss of significance almost always occurs when this is done. Sometimes
you can rearrange or reformulate the problem to avoid subtractive cancellation. If this is not
possible, you may want to use extended-precision arithmetic. Furthermore, when adding

4.4 BLUNDERS, FORMULATION ERRORS, AND DATA UNCERTAINTY 103

4.4

and subtracting numbers, it is best to sort the numbers and work with the smallest numbers
first. This avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of both
truncation and round-off errors. Several examples have been presented in this chapter. Pre-
diction of total numerical error is very complicated for even moderately sized problems
and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.

The tendency is to push forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible to substitute the results back
into the original equation to check that it is actually satisfied.

Finally you should be prepared to perform numerical experiments to increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change model parameters or input values. We may want to try different numeri-
cal algorithms that have different theoretical foundations, are based on different computa-
tional strategies, or have different convergence properties and stability characteristics.

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe economic ramifications, it is appropriate to take special
precautions. This may involve the use of two or more independent groups to solve the same
problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this book.
We will leave these investigations to specific sections.

BLUNDERS, FORMULATION ERRORS,
AND DATA UNCERTAINTY

Although the following sources of error are not directly connected with most of the nu-
merical methods in this book, they can sometimes have great impact on the success of a
modeling effort. Thus, they must always be kept in mind when applying numerical tech-
niques in the context of real-world problems.

4.4.1 Blunders

We are all familiar with gross errors, or blunders. In the early years of computers, erro-
neous numerical results could sometimes be attributed to malfunctions of the computer
itself. Today, this source of error is highly unlikely, and most blunders must be attributed to
human imperfection.

Blunders can occur at any stage of the mathematical modeling process and can con-
tribute to all the other components of error. They can be avoided only by sound knowledge
of fundamental principles and by the care with which you approach and design your solu-
tion to a problem.

Blunders are usually disregarded in discussions of numerical methods. This is no doubt
due to the fact that, try as we may, mistakes are to a certain extent unavoidable. However,
we believe that there are a number of ways in which their occurrence can be minimized. In

104

TRUNCATION ERRORS AND THE TAYLOR SERIES

particular, the good programming habits that were outlined in Chap. 2 are extremely useful
for mitigating programming blunders. In addition, there are usually simple ways to check
whether a particular numerical method is working properly. Throughout this book, we
discuss ways to check the results of numerical calculations.

4.4.2 Formulation Errors

Formulation, or model, errors relate to bias that can be ascribed to incomplete mathemati-
cal models. An example of a negligible formulation error is the fact that Newton’s second
law does not account for relativistic effects. This does not detract from the adequacy of the
solution in Example 1.1 because these errors are minimal on the time and space scales as-
sociated with the falling parachutist problem.

However, suppose that air resistance is not linearly proportional to fall velocity, as in
Eq. (1.7), but is a function of the square of velocity. If this were the case, both the analyti-
cal and numerical solutions obtained in the Chap. 1 would be erroneous because of formu-
lation error. Further consideration of formulation error is included in some of the engineer-
ing applications in the remainder of the book. You should be cognizant of these problems
and realize that, if you are working with a poorly conceived model, no numerical method
will provide adequate results.

4.4.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data upon
which a model is based. For instance, suppose we wanted to test the falling parachutist
model by having an individual make repeated jumps and then measuring his or her veloc-
ity after a specified time interval. Uncertainty would undoubtedly be associated with these
measurements, since the parachutist would fall faster during some jumps than during oth-
ers. These errors can exhibit both inaccuracy and imprecision. If our instruments consis-
tently underestimate or overestimate the velocity, we are dealing with an inaccurate, or
biased, device. On the other hand, if the measurements are randomly high and low, we are
dealing with a question of precision.

Measurement errors can be quantified by summarizing the data with one or more well-
chosen statistics that convey as much information as possible regarding specific character-
istics of the data. These descriptive statistics are most often selected to represent (1) the
location of the center of the distribution of the data and (2) the degree of spread of the data.
As such, they provide a measure of the bias and imprecision, respectively. We will return
to the topic of characterizing data uncertainty in Part Five.

Although you must be cognizant of blunders, formulation errors, and uncertain data,
the numerical methods used for building models can be studied, for the most part, inde-
pendently of these errors. Therefore, for most of this book, we will assume that we have
not made gross errors, we have a sound model, and we are dealing with error-free mea-
surements. Under these conditions, we can study numerical errors without complicating
factors.

PROBLEMS

105

PROBLEMS

4.1 The Maclaurin series expansion for cos x is

x2 x4 x% x8
COSX=1—"— 4" -4 ...
2+4! 6!+8!

Starting with the simplest version, cos x = 1, add terms one at a
time to estimate cos(rr/3). After each new term is added, compute
the true and approximate percent relative errors. Use your pocket
calculator to determine the true value. Add terms until the absolute
value of the approximate error estimate falls below an error crite-
rion conforming to two significant figures.

4.2 Perform the same computation as in Prob. 4.1, but use the
Maclaurin series expansion for the sin x to estimate sin(sr/3).

x3 x5 X7

smx:x—g—i—a—ﬂ

4.3 The following infinite series can be used to approximate e*:
eX:1+x+—2+X—3+-~-+ﬁ
2 3! n!

(a) Prove that this Maclaurin series expansion is a special case of
the Taylor series expansion [(Eq. (4.7)] withx; =0and h = x.

(b) Use the Taylor series to estimate f(x) =e™* at xj;; = 1 for
Xj = 0.2. Employ the zero-, first-, second-, and third-order ver-
sions and compute the |&¢| for each case.

4.4 Use zero- through fourth-order Taylor series expansions to pre-

dict f(2.5) for f(x) =Inx using a base point at x = 1. Compute

the true percent relative error &; for each approximation. Discuss

the meaning of the results.

4.5 Use zero- through third-order Taylor series expansions to

predict f(3) for

f(x) = 25x3 — 6x2 + 7x — 88

using a base point at x = 1. Compute the true percent relative error
&t for each approximation.

4.6 Use forward and backward difference approximations of O(h)
and a centered difference approximation of O(h?) to estimate the
first derivative of the function examined in Prob. 4.5. Evaluate the
derivative at x = 2 using a step size of h = 0.2. Compare your
results with the true value of the derivative. Interpret your results
on the basis of the remainder term of the Taylor series expansion.
4.7 Use a centered difference approximation of O(h?) to estimate
the second derivative of the function examined in Prob. 4.5. Per-
form the evaluation at x = 2 using step sizes of h = 0.25 and
0.125. Compare your estimates with the true value of the second
derivative. Interpret your results on the basis of the remainder term
of the Taylor series expansion.

4.8 The Stefan-Boltzmann law can be employed to estimate the
rate of radiation of energy H from a surface, as in

H = AecT*

where H is in watts, A = the surface area (m?), e = the emissivity
that characterizes the emitting properties of the surface (dimen-
sionless), o = a universal constant called the Stefan-Boltzmann
constant (= 5.67 x 108 Wm=2K~%), and T = absolute tempera-
ture (K). Determine the error of H for a steel plate with A =
0.15m?, e = 0.90, and T = 650 =+ 20. Compare your results with
the exact error. Repeat the computation but with T = 650 + 40.
Interpret your results.

4.9 Repeat Prob. 4.8 but for a copper sphere with
radius = 0.15+0.01 m, e = 0.90 + 0.05, and T = 550 =+ 20.
4.10 Recall that the velocity of the falling parachutist can be com-
puted by [Eq. (1.10)],

ut) = I (1—emm)

Use a first-order error analysis to estimate the error of vatt = 6, if
g=9.8andm =50butc =125+ 1.5.

4.11 Repeat Prob. 4.10 with g =9.8,t =6, c =125+ 1.5, and
m =50+ 2.

4.12 Evaluate and interpret the condition numbers for

@ fx=+Ix—-1+1 for x = 1.00001

(b) f(x) =e* forx =10
(© fx)=vx2+1-x for x = 300
X
@ foo= &1 for x = 0.001
sinx
fX) = ——— f = 1.0001
(e fx) T4 cosx or x = 1.00017

4.13 Employing ideas from Sec. 4.2, derive the relationships from
Table 4.3.

4.14 Prove that Eq. (4.4) is exact for all values of x if f(x) =
ax? 4 bx +c.

4.15 Manning’s formula for a rectangular channel can be written as

5/3
o 1 BH

T n(B+2H)23

where Q = flow (m%s), n = a roughness coefficient, B = width
(m), H = depth (m), and S = slope. You are applying this formula
to a stream where you know that the width =20 m and the
depth = 0.3 m. Unfortunately, you know the roughness and the
slope to only a £ 10% precision. That is, you know that the rough-
ness is about 0.03 with a range from 0.027 to 0.033 and the slope is
0.0003 with a range from 0.00027 to 0.00033. Use a first-order

106

TRUNCATION ERRORS AND THE TAYLOR SERIES

error analysis to determine the sensitivity of the flow prediction to
each of these two factors. Which one should you attempt to mea-
sure with more precision?

4.16 If|x| < 1, itis known that

i=1+x+x2+x3+-~-
1-x

Repeat Prob. 4.1 for this series for x = 0.1.
4.17 A missile leaves the ground with an initial velocity vg form-
ing an angle ¢y with the vertical as shown in Fig. P4.17. The

Figure P4.17

maximum desired altitude is «R where R is the radius of the earth.
The laws of mechanics can be used to show that

o Ve 2
1+a \v

singg = (1 +a),/1—

where v, = the escape velocity of the missile. It is desired to fire
the missile and reach the design maximum altitude within an accu-
racy of £2%. Determine the range of values for ¢y if ve /vo = 2 and
o = 0.25.

4.18 To calculate a planet’s space coordinates, we have to solve the
function

f(x) =x —1—-0.5sinx

Let the base point be a = X; = /2 on the interval [0,]. Deter-
mine the highest-order Taylor series expansion resulting in a maxi-
mum error of 0.015 on the specified interval. The error is equal to
the absolute value of the difference between the given function and
the specific Taylor series expansion. (Hint: Solve graphically.)
4.19 Consider the function f(x) =x3 —2x +4 on the interval
[—2, 2] with h = 0.25. Use the forward, backward, and centered
finite difference approximations for the first and second derivatives
so as to graphically illustrate which approximation is most accu-
rate. Graph all three first derivative finite difference approxima-
tions along with the theoretical, and do the same for the second
derivative as well.

4.20 Derive Eq. (4.31).

4.21 Repeat Example 4.8, but for f(x) = cos(x) at x = /6.

4.22 Repeat Example 4.8, but for the forward divided difference

(Eq. 4.17).

4.23 Develop a well-structured program to compute the Maclaurin

series expansion for the cosine function as described in Prob. 4.1.

The function should have the following features:

* Iterate until the relative error falls below a stopping criterion
(es) or exceeds a maximum number of iterations (maxit).
Allow the user to specify values for these parameters.

¢ Include default values of es (= 0.000001) and maxit (= 100)
in the event that they are not specified by the user.

* Return the estimate of cos(x), the approximate relative error, the
number of iterations, and the true relative error (that you can cal-
culate based on the built-in cosine function).

PT1.4

EPILOGUE: PART ONE

TRADE-OFFS

Numerical methods are scientific in the sense that they represent systematic techniques for
solving mathematical problems. However, there is a certain degree of art, subjective judg-
ment, and compromise associated with their effective use in engineering practice. For each
problem, you may be confronted with several alternative numerical methods and many
different types of computers. Thus, the elegance and efficiency of different approaches to
problems is highly individualistic and correlated with your ability to choose wisely among
options. Unfortunately, as with any intuitive process, the factors influencing this choice are
difficult to communicate. Only by experience can these skills be fully comprehended and
honed. However, because these skills play such a prominent role in the effective imple-
mentation of the methods, we have included this section as an introduction to some of the
trade-offs that you must consider when selecting a numerical method and the tools for
implementing the method. It is hoped that the discussion that follows will influence your
orientation when approaching subsequent material. Also, it is hoped that you will refer
back to this material when you are confronted with choices and trade-offs in the remainder
of the book.

1. Type of Mathematical Problem. As delineated previously in Fig. PT1.2, several types of
mathematical problems are discussed in this book:
(@) Roots of equations.
(b) Systems of simultaneous linear algebraic equations.
(c) Optimization.
(d) Curve fitting.
(e) Numerical integration.
(f) Ordinary differential equations.
(g) Partial differential equations.

You will probably be introduced to the applied aspects of numerical methods by con-
fronting a problem in one of the above areas. Numerical methods will be required because
the problem cannot be solved efficiently using analytical techniques. You should be
cognizant of the fact that your professional activities will eventually involve problems in
all the above areas. Thus, the study of numerical methods and the selection of automatic
computation equipment should, at the minimum, consider these basic types of problems.
More advanced problems may require capabilities of handling areas such as functional
approximation, integral equations, etc. These areas typically demand greater computation
power or advanced methods not covered in this text. Other references such as Carnahan,
Luther, and Wilkes (1969); Hamming (1973); Ralston and Rabinowitz (1978); Burden and
Faires (2005); and Moler (2004) should be consulted for problems beyond the scope of this
book. In addition, at the end of each part of this text, we include a brief summary and

107

108

EPILOGUE: PART ONE

references for advanced methods to provide you with avenues for pursuing further studies of

numerical methods.

2. Type, Availability, Precision, Cost, and Speed of Computer. You may have the option of
working with a variety of computation tools. These range from pocket calculators to
large mainframe computers. Of course, any of the tools can be used to implement any
numerical method (including simple paper and pencil). It is usually not a question of
ultimate capability but rather of cost, convenience, speed, dependability, repeatability,
and precision. Although each of the tools will continue to have utility, the recent rapid
advances in the performance of personal computers have already had a major impact on
the engineering profession. We expect this revolution will spread as technological
improvements continue because personal computers offer an excellent compromise in
convenience, cost, precision, speed, and storage capacity. Furthermore, they can be
readily applied to most practical engineering problems.

3. Program Development Cost versus Software Cost versus Run-Time Cost. Once the
types of mathematical problems to be solved have been identified and the computer
system has been selected, it is appropriate to consider software and run-time costs.
Software development may represent a substantial effort in many engineering projects
and may therefore be a significant cost. In this regard, it is particularly important that
you be very well acquainted with the theoretical and practical aspects of the relevant
numerical methods. In addition, you should be familiar with professionally developed
software. Low-cost software is widely available to implement numerical methods that
may be readily adapted to a broad variety of problems.

4. Characteristics of the Numerical Method. When computer hardware and software costs
are high, or if computer availability is limited (for example, on some timeshare
systems), it pays to choose carefully the numerical method to suit the situation. On the
other hand, if the problem is still at the exploratory stage and computer access and cost
are not problems, it may be appropriate for you to select a numerical method that
always works but may not be the most computationally efficient. The numerical
methods available to solve any particular type of problem involve the types of trade-
offs just discussed and others:

(@) Number of Initial Guesses or Starting Points. Some of the numerical methods for
finding roots of equations or solving differential equations require the user to spec-
ify initial guesses or starting points. Simple methods usually require one value,
whereas complicated methods may require more than one value. The advantages
of complicated methods that are computationally efficient may be offset by the
requirement for multiple starting points. You must use your experience and
judgment to assess the trade-offs for each particular problem.

(b) Rate of Convergence. Certain numerical methods converge more rapidly than
others. However, this rapid convergence may require more refined initial guesses
and more complex programming than a method with slower convergence. Again,
you must use your judgment in selecting a method. Faster is not always better.

(c) Stability. Some numerical methods for finding roots of equations or solutions for
systems of linear equations may diverge rather than converge on the correct answer
for certain problems. Why would you tolerate this possibility when confronted with
design or planning problems? The answer is that these methods may be highly
efficient when they work. Thus, trade-offs again emerge. You must decide if your

PT1.4 TRADE-OFFS 109

problem requirements justify the effort needed to apply a method that may not
always converge.

(d) Accuracy and Precision. Some numerical methods are simply more accurate or
precise than others. Good examples are the various equations available for numer-
ical integration. Usually, the performance of low-accuracy methods can be
improved by decreasing the step size or increasing the number of applications over
a given interval. Is it better to use a low-accuracy method with small step sizes or
a high-accuracy method with large step sizes? This question must be addressed
on a case-by-case basis taking into consideration the additional factors such as cost
and ease of programming. In addition, you must also be concerned with round-off
errors when you are using multiple applications of low-accuracy methods and
when the number of computations becomes large. Here the number of significant
figures handled by the computer may be the deciding factor.

(e) Breadth of Application. Some numerical methods can be applied to only a limited
class of problems or to problems that satisfy certain mathematical restrictions.
Other methods are not affected by such limitations. You must evaluate whether it
is worth your effort to develop programs that employ techniques that are appropri-
ate for only a limited number of problems. The fact that such techniques may be
widely used suggests that they have advantages that will often outweigh their dis-
advantages. Obviously, trade-offs are occurring.

(f) Special Requirements. Some numerical techniques attempt to increase accuracy
and rate of convergence using additional or special information. An example
would be to use estimated or theoretical values of errors to improve accuracy.
However, these improvements are generally not achieved without some inconve-
nience in terms of added computing costs or increased program complexity.

(g) Programming Effort Required. Efforts to improve rates of convergence, stability,
and accuracy can be creative and ingenious. When improvements can be made
without increasing the programming complexity, they may be considered elegant
and will probably find immediate use in the engineering profession. However, if
they require more complicated programs, you are again faced with a trade-off sit-
uation that may or may not favor the new method.

It is clear that the above discussion concerning a choice of numerical methods
reduces to one of cost and accuracy. The costs are those involved with computer time
and program development. Appropriate accuracy is a question of professional judg-
ment and ethics.

5. Mathematical Behavior of the Function, Equation, or Data. In selecting a particular
numerical method, type of computer, and type of software, you must consider the
complexity of your functions, equations, or data. Simple equations and smooth data
may be appropriately handled by simple numerical algorithms and inexpensive
computers. The opposite is true for complicated equations and data exhibiting
discontinuities.

6. Ease of Application (User-Friendly?). Some numerical methods are easy to apply;
others are difficult. This may be a consideration when choosing one method over
another. This same idea applies to decisions regarding program development costs
versus professionally developed software. It may take considerable effort to convert

110

EPILOGUE: PART ONE

PT1.5

PT1.6

a difficult program to one that is user-friendly. Ways to do this were introduced in
Chap. 2 and are elaborated throughout the book.

7. Maintenance. Programs for solving engineering problems require maintenance because
during application, difficulties invariably occur. Maintenance may require changing the
program code or expanding the documentation. Simple programs and numerical algo-
rithms are simpler to maintain.

The chapters that follow involve the development of various types of numerical methods
for various types of mathematical problems. Several alternative methods will be given in
each chapter. These various methods (rather than a single method chosen by the authors)
are presented because there is no single “best” method. There is no best method because
there are many trade-offs that must be considered when applying the methods to practical
problems. A table that highlights the trade-offs involved in each method will be found at the
end of each part of the book. This table should assist you in selecting the appropriate
numerical procedure for your particular problem context.

IMPORTANT RELATIONSHIPS AND FORMULAS

Table PT1.2 summarizes important information that was presented in Part One. The table
can be consulted to quickly access important relationships and formulas. The epilogue of
each part of the book will contain such a summary.

ADVANCED METHODS AND ADDITIONAL REFERENCES

The epilogue of each part of the book will also include a section designed to facilitate and
encourage further studies of numerical methods. This section will reference other books on
the subject as well as material related to more advanced methods.!

To extend the background provided in Part One, numerous manuals on computer
programming are available. It would be difficult to reference all the excellent books and
manuals pertaining to specific languages and computers. In addition, you probably
already have material from your previous exposure to programming. However, if this is
your first experience with computers, your instructor and fellow students should also be
able to advise you regarding good reference books for the machines and languages avail-
able at your school.

As for error analysis, any good introductory calculus book will include supplementary
material related to subjects such as the Taylor series expansion. Texts by Swokowski
(1979), Thomas and Finney (1979), and Simmons (1985) provide very readable discus-
sions of these subjects. In addition, Taylor (1982) presents a nice introduction to error
analysis.

Finally, although we hope that our book serves you well, it is always good to consult
other sources when trying to master a new subject. Burden and Faires (2005); Ralston and
Rabinowitz (1978); Hoffman (1992); and Carnahan, Luther, and Wilkes (1969) provide

Books are referenced only by author here; a complete bibliography will be found at the back of this text.

PT1.6 ADVANCED METHODS AND ADDITIONAL REFERENCES 111

TABLE PT1.2 Summary of important information presented in Part One.

Error Definitions
True error

True percent relative error

Approximate percent relative error

Stopping criterion

E; = true value — approximation

true value — approximation
true value

&= 100%
present approximation — previous approximation
present approximation

100%

Eq =

Terminate computation when
£q < Es
where ¢ is the desired percent relative error

Taylor Series

Taylor series expansion fixin) = fix) + Fx)h + fz()!(i) 2
F(x) Frl(x)
+ 3 R4 B+ R,

where
Remainder n:(fr:%])gs))!h““

or

Ry = O[h"+)
Numerical Differentiation
First forward finite divided difference Flx) = f(XM)h_ fixi) + Olhy

(Other divided differences are summarized in Chaps. 4 and 23.)

Error Propagation

For n independent variables x, xy, . .

f can be estimated via

Af=|F

X7

AX1 +

of
9X7

., Xp having errors A%y, AX2, ..., AX,, the error in the function
A%+ -+ || Az,
09Xy,

comprehensive discussions of most numerical methods. Other enjoyable books on the
subject are Gerald and Wheatley (2004), and Cheney and Kincaid (2008). In addition,
Press et al. (2007) include algorithms to implement a variety of methods, and Moler (2004)
and Chapra (2007) are devoted to numerical methods with MATLAB.

=

PART TW

ROOTS OF EQUATIONS

PT2.1

MOTIVATION
Years ago, you learned to use the quadratic formula

X = b+ vb® —dac ‘/222_74“ (PT2.1)
to solve

f(x) =ax2+bx+c=0 (PT2.2)

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They repre-
sent the values of x that make Eq. (PT2.2) equal to zero. Thus, we can define the root of an
equation as the value of x that makes f(x) = 0. For this reason, roots are sometimes called
the zeros of the equation.

Although the quadratic formula is handy for solving Eq. (PT2.2), there are many other
functions for which the root cannot be determined so easily. For these cases, the numerical
methods described in Chaps. 5, 6, and 7 provide efficient means to obtain the answer.

PT2.1.1 Noncomputer Methods for Determining Roots

Before the advent of digital computers, there were several ways to solve for roots of alge-
braic and transcendental equations. For some cases, the roots could be obtained by direct
methods, as was done with Eq. (PT2.1). Although there were equations like this that could
be solved directly, there were many more that could not. For example, even an apparently
simple function such as f(x) = e~ — x cannot be solved analytically. In such instances, the
only alternative is an approximate solution technique.

One method to obtain an approximate solution is to plot the function and determine
where it crosses the x axis. This point, which represents the x value for which f(x) =0, is
the root. Graphical techniques are discussed at the beginning of Chaps. 5 and 6.

Although graphical methods are useful for obtaining rough estimates of roots, they are
limited because of their lack of precision. An alternative approach is to use trial and error.
This “technique” consists of guessing a value of x and evaluating whether f(x) is zero. If
not (as is almost always the case), another guess is made, and f(x) is again evaluated to
determine whether the new value provides a better estimate of the root. The process is re-
peated until a guess is obtained that results in an f(x) that is close to zero.

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering practice. The techniques described in Part Two represent alternatives that
are also approximate but employ systematic strategies to home in on the true root. As
elaborated on in the following pages, the combination of these systematic methods and

113

114

ROOTS OF EQUATIONS

computers makes the solution of most applied roots-of-equations problems a simple and
efficient task.

PT2.1.2 Roots of Equations and Engineering Practice

Although they arise in other problem contexts, roots of equations frequently occur in the
area of engineering design. Table PT2.1 lists several fundamental principles that are rou-
tinely used in design work. As introduced in Chap. 1, mathematical equations or models
derived from these principles are employed to predict dependent variables as a function of
independent variables, forcing functions, and parameters. Note that in each case, the de-
pendent variables reflect the state or performance of the system, whereas the parameters
represent its properties or composition.

An example of such a model is the equation, derived from Newton’s second law, used
in Chap. 1 for the parachutist’s velocity:

m
v = gT (1—e /mn (PT2.3)

TABLE PT2.1 Fundamental principles used in engineering design problems.

Fundamental Dependent Independent
Principle Variable Variable Parameters
Heat balance Temperature Time and Thermal properties
position of material and
geometry of
sysfem
Mass balance Concentration or Time and Chemical behavior
quantity of mass posifion of material, mass
transfer coefficients,
and geometry of
system
Force balance Magnitude and Time and Strength of material,
direction of forces position structural properties,
and geometry of
system
Energy balance Changes in the kinetic- Time and Thermal properties,
and potentialenergy posifion mass of material,
states of the system and sysfem
geometry
Newton’s laws Acceleration, velocity, Time and Mass of material,
of mofion or location position system geometry,
and dissipative
parameters such
as friction
or drag
Kirchhoff's laws Currents and voliages Time Electrical properties
in electric circuits of systems such

as resistance,
capacitance, and
inductance

PT2.2 MATHEMATICAL BACKGROUND 115

PT2.2

where velocity v = the dependent variable, time t = the independent variable, the gravi-
tational constant g = the forcing function, and the drag coefficient ¢ and mass m =
parameters. If the parameters are known, Eq. (PT2.3) can be used to predict the para-
chutist’s velocity as a function of time. Such computations can be performed directly
because v is expressed explicitly as a function of time. That is, it is isolated on one side
of the equal sign.

However, suppose we had to determine the drag coefficient for a parachutist of a given
mass to attain a prescribed velocity in a set time period. Although Eq. (PT2.3) provides a
mathematical representation of the interrelationship among the model variables and param-
eters, it cannot be solved explicitly for the drag coefficient. Try it. There is no way to re-
arrange the equation so that c is isolated on one side of the equal sign. In such cases, ¢ is
said to be implicit.

This represents a real dilemma, because many engineering design problems involve
specifying the properties or composition of a system (as represented by its parameters) to
ensure that it performs in a desired manner (as represented by its variables). Thus, these
problems often require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (PT2.3).
This is done by subtracting the dependent variable v from both sides of the equation to give

f(c) = % A (PT2.4)

The value of ¢ that makes f (c) = 0 is, therefore, the root of the equation. This value also
represents the drag coefficient that solves the design problem.

Part Two of this book deals with a variety of numerical and graphical methods for
determining roots of relationships such as Eq. (PT2.4). These techniques can be applied
to engineering design problems that are based on the fundamental principles outlined in
Table PT2.1 as well as to many other problems confronted routinely in engineering
practice.

MATHEMATICAL BACKGROUND

For most of the subject areas in this book, there is usually some prerequisite mathematical
background needed to successfully master the topic. For example, the concepts of error es-
timation and the Taylor series expansion discussed in Chaps. 3 and 4 have direct relevance
to our discussion of roots of equations. Additionally, prior to this point we have mentioned
the terms “algebraic” and “transcendental” equations. It might be helpful to formally de-
fine these terms and discuss how they relate to the scope of this part of the book.

By definition, a function given by y = f(x) is algebraic if it can be expressed in the
form

foy" + fooay" 14+ fiy+ fp =0 (PT2.5)

where fj = an ith-order polynomial in x. Polynomials are a simple class of algebraic func-
tions that are represented generally by

fo(X) = ag + a1X + apx? + - -+ + apX" (PT2.6)

116

ROOTS OF EQUATIONS

PT2.3

where n = the order of the polynomial and the a’s = constants. Some specific examples
are

fa(x) = 1 — 2.37x + 7.5x2 (PT2.7)
and
fo(x) = 5x2 — x3 4+ 7x6 (PT2.8)

A transcendental function is one that is nonalgebraic. These include trigonometric,
exponential, logarithmic, and other, less familiar, functions. Examples are

fx)=Inx2—1 (PT2.9)
and
f(x) = e~ %% sin(3x — 0.5) (PT2.10)

Roots of equations may be either real or complex. Although there are cases where complex
roots of nonpolynomials are of interest, such situations are less common than for polyno-
mials. As a consequence, the standard methods for locating roots typically fall into two
somewhat related but primarily distinct problem areas:

1. The determination of the real roots of algebraic and transcendental equations. These
techniques are usually designed to determine the value of a single real root on the basis
of foreknowledge of its approximate location.

2. The determination of all real and complex roots of polynomials. These methods are
specifically designed for polynomials. They systematically determine all the roots of
the polynomial rather than determining a single real root given an approximate
location.

In this book we discuss both. Chapters 5 and 6 are devoted to the first category.
Chapter 7 deals with polynomials.

ORIENTATION

Some orientation is helpful before proceeding to the numerical methods for determining
roots of equations. The following is intended to give you an overview of the material in
Part Two. In addition, some objectives have been included to help you focus your efforts
when studying the material.

PT2.3.1 Scope and Preview

Figure PT2.1 is a schematic representation of the organization of Part Two. Examine this
figure carefully, starting at the top and working clockwise.

After the present introduction, Chap. 5 is devoted to bracketing methods for finding
roots. These methods start with guesses that bracket, or contain, the root and then system-
atically reduce the width of the bracket. Two specific methods are covered: bisection and
false position. Graphical methods are used to provide visual insight into the techniques.
Error formulations are developed to help you determine how much computational effort is
required to estimate the root to a prespecified level of precision.

PT2.3 ORIENTATION 117

PT 2.1 PT 2.3
Motivation Orientation

PT 2.2
Mathematical
background

5.1
Graphical
methods

PART 2

5.2
Bisection

PT 2.6
Advanced Roots
methods of
Equations
53
False

Pr 225
Important
formulas

position

CHAPTER 5
Bracketing
Methods

5.4
Incremental
searches

PT 2.4
Trade-offs

6.1
Fixed-point
iteration

6.2
Newton-
Raphson

8.4
Mechanical
engineering

8.3

CHAPTER 6

Electrical CHAPTER 8
engineering Engineering Open
Case Studies Methods B,‘Z‘:t's
method

8.2
Civil
engineering

6.5
Multiple
roots

CHAPTER 7

7.7 Roots
8.1 Software P vl 6.6
Chemical packages or Polynomials in Nonlinear
engineering Polynomials CEISETIE] systems

7.6
Other
methods

7.2
Computing with
polynomials

7:5!
Bairstow's
method

7.3
Conventional
methods

7.4
Miiller's
method

FIGURE PT2.1

Schematic of the organization of the material in Part Two: Roots of Equations.

Chapter 6 covers open methods. These methods also involve systematic trial-and-error
iterations but do not require that the initial guesses bracket the root. We will discover that
these methods are usually more computationally efficient than bracketing methods but that
they do not always work. One-point iteration, Newton-Raphson, and secant methods are
described. Graphical methods are used to provide geometric insight into cases where the

118

ROOTS OF EQUATIONS

open methods do not work. Formulas are developed that provide an idea of how fast open
methods home in on the root. An advanced approach, Brent’s method, that combines the
reliability of bracketing with the speed of open methods is described. In addition, an approach
to extend the Newton-Raphson method to systems of nonlinear equations is explained.

Chapter 7 is devoted to finding the roots of polynomials. After background sections
on polynomials, the use of conventional methods (in particular the open methods from
Chap. 6) are discussed. Then two special methods for locating polynomial roots are
described: Miller’s and Bairstow’s methods. The chapter ends with information related to
finding roots with Excel, MATLAB, and Mathcad.

Chapter 8 extends the above concepts to actual engineering problems. Engineering
case studies are used to illustrate the strengths and weaknesses of each method and to pro-
vide insight into the application of the techniques in professional practice. The applications
also highlight the trade-offs (as discussed in Part One) associated with the various methods.

An epilogue is included at the end of Part Two. It contains a detailed comparison of the
methods discussed in Chaps. 5, 6, and 7. This comparison includes a description of trade-
offs related to the proper use of each technique. This section also provides a summary of
important formulas, along with references for some numerical methods that are beyond the
scope of this text.

PT2.3.2 Goals and Obijectives

Study Objectives. After completing Part Two, you should have sufficient information to
successfully approach a wide variety of engineering problems dealing with roots of equa-
tions. In general, you should have mastered the techniques, have learned to assess their
reliability, and be capable of choosing the best method (or methods) for any particular
problem. In addition to these general goals, the specific concepts in Table PT2.2 should be
assimilated for a comprehensive understanding of the material in Part Two.

TABLE PT2.2 Specific study objectives for Part Two.

1. Understand the graphical inferpretation of a root
2. Know the graphical inferpretation of the false-position method and why it is usually superior to the
bisection method
3. Understand the difference between bracketing and open methods for root location
4. Understand the concepts of convergence and divergence; use the two-curve graphical method to
provide a visual manifestation of the concepts
5. Know why bracketing methods always converge, whereas open methods may sometimes diverge
6. Realize that convergence of open methods is more likely if the initial guess is close fo the
frue root
7. Understand the concepts of linear and quadratic convergence and their implications for the efficiencies
of the fixed-pointiteration and Newton-Raphson methods
8. Know the fundamental difference between the false-position and secant methods and how it relates to
convergence
Q. Understand how Brent's method combines the reliability of bisection with the speed of open methods
10. Understand the problems posed by multiple roots and the modifications available fo mitigate them
11. Know how to extend the single-equation Newton-Raphson approach to solve systems of nonlinear
equations

PT2.3 ORIENTATION 119

Computer Objectives. The book provides you with software and simple computer algo-
rithms to implement the techniques discussed in Part Two. All have utility as learning tools.

Pseudocodes for several methods are also supplied directly in the text. This informa-
tion will allow you to expand your software library to include programs that are more
efficient than the bisection method. For example, you may also want to have your own
software for the false-position, Newton-Raphson, and secant techniques, which are often
more efficient than the bisection method.

Finally, packages such as Excel, MATLAB, and Mathcad have powerful capabilities for
locating roots. You can use this part of the book to become familiar with these capabilities.

CHAPTER

120

EXAMPLE 5.1

Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a function
typically changes sign in the vicinity of a root. These techniques are called bracketing
methods because two initial guesses for the root are required. As the name implies, these
guesses must “bracket,” or be on either side of, the root. The particular methods described
herein employ different strategies to systematically reduce the width of the bracket and,
hence, home in on the correct answer.

As a prelude to these techniques, we will briefly discuss graphical methods for depict-
ing functions and their roots. Beyond their utility for providing rough guesses, graphical
techniques are also useful for visualizing the properties of the functions and the behavior
of the various numerical methods.

GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make a
plot of the function and observe where it crosses the x axis. This point, which represents
the x value for which f(x) = 0, provides a rough approximation of the root.

The Graphical Approach

Problem Statement. Use the graphical approach to determine the drag coefficient ¢
needed for a parachutist of mass m = 68.1 kg to have a velocity of 40 m/s after free-falling
for time t = 10 s. Note: The acceleration due to gravity is 9.8 m/s?.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using the
parameters t = 10, g = 9.8, v = 40, and m = 68.1:

9.8(68.1)
C

f(c) = (1—e©/%8D10) 40

or

f(c) = ———(1 — e 014683¢) _ 40 (E5.1.1)

Various values of ¢ can be substituted into the right-hand side of this equation to compute

5.1 GRAPHICAL METHODS 121

c f(c)
4 34.115
8 17.653
12 6.067
16 —2.269
20 —8.401

These points are plotted in Fig. 5.1. The resulting curve crosses the c axis between 12 and
16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-
ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

667.38
f(14.75) = Ta7E (1 — 701468430479y _ 40 = 0.059

which is close to zero. It can also be checked by substituting it into Eq. (PT2.4) along with
the parameter values from this example to give

~9.8(68.1)
T 1475

which is very close to the desired fall velocity of 40 m/s.

(1 — e~ (1475/681)10) _ 40 059

FIGURE 5.1
The graphical approach for determining the roots of an equation.

f(c)

40 —

20 —

122

BRACKETING METHODS

f(x)

@)

f(x)

|
|
f004 1
l
|
|

(c)
(%)

FIGURE 5.2

lllustration of a number of
general ways that a root may
occur in an interval prescribed
by a lower bound xj and an
upper bound x,. Parts (a] and
(c) indicate that if both f(x) and
f(x,) have the same sign, either
there will be no roots or there
will be an even number of roots
within the inferval. Parts (b) and
(d) indicate that if the function
has different signs at the end
points, there will be an odd
number of roots in the interval.

Graphical techniques are of limited practical value because they are not precise. How-
ever, graphical methods can be utilized to obtain rough estimates of roots. These estimates
can be employed as starting guesses for numerical methods discussed in this and the next
chapter.

Aside from providing rough estimates of the root, graphical interpretations are impor-
tant tools for understanding the properties of the functions and anticipating the pitfalls of
the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots can
occur (or be absent) in an interval prescribed by a lower bound x; and an upper bound x,.
Figure 5.2b depicts the case where a single root is bracketed by negative and positive values
of f(x). However, Fig. 5.2d, where f(x) and f(x,) are also on opposite sides of the x axis,
shows three roots occurring within the interval. In general, if f(x)) and f(x,) have opposite
signs, there are an odd number of roots in the interval. As indicated by Fig. 5.2a and c, if
f(x)) and f(x,) have the same sign, there are either no roots or an even number of roots
between the values.

Although these generalizations are usually true, there are cases where they do not
hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinuous
functions (Fig. 5.3b) can violate these principles. An example of a function that is tangen-
tial to the axis is the cubic equation f(x) = (x — 2)(x — 2)(x — 4). Notice that x = 2 makes
two terms in this polynomial equal to zero. Mathematically, x = 2 is called a multiple root.
At the end of Chap. 6, we will present techniques that are expressly designed to locate
multiple roots.

The existence of cases of the type depicted in Fig. 5.3 makes it difficult to develop gen-
eral computer algorithms guaranteed to locate all the roots in an interval. However, when
used in conjunction with graphical approaches, the methods described in the following

FIGURE 5.3
lllustration of some exceptions to the general cases depicted in f(x)
Fig. 5.2. [a) Multiple root that occurs when the function is tangen-
fial fo the x axis. For this case, although the end points are of op-
posife signs, there are an even number of axis infersections for
the inferval. [b) Disconfinuous function where end points of oppo-
site sign bracket an even number of roots. Special strategies are
required for defermining the roofs for these cases.

|
|
|
|
|
|
:
|
f0)4 |
i
|
|
|
|
|
|

5.1 GRAPHICAL METHODS 123

sections are extremely useful for solving many roots of equations problems confronted rou-
tinely by engineers and applied mathematicians.

EXAMPLE 5.2 Use of Computer Graphics to Locate Roots

Problem Statement. Computer graphics can expedite and improve your efforts to locate
roots of equations. The function

f(x) = sin 10x + cos 3x
has several roots over the range x = 0 to x = 5. Use computer graphics to gain insight into
the behavior of this function.
Solution. Packages such as Excel and MATLAB software can be used to generate plots.
Figure 5.4a is a plot of f(x) from x = 0 to x = 5. This plot suggests the presence of several
roots, including a possible double root at about x = 4.2 where f(x) appears to be tangent to

FIGURE 5.4

The progressive enlargement of f(x] = sin 10x + cos 3x by the computer. Such inferactive graphics
permits the analyst fo determine that two disfinct roofs exist between x = 4.2 and x = 4.3.

YOWAAAA . :

T

5 4 5
X X
@ (b)
.15
o \v
S T3 T T T T T Y A
4.2 4.25 4.3
X

124

BRACKETING METHODS

the x axis. A more detailed picture of the behavior of f(x) is obtained by changing the plot-
ting range from x = 3to x = 5, as shown in Fig. 5.4b. Finally, in Fig. 5.4c, the vertical scale
is narrowed further to f(x) = —0.15 to f(x) = 0.15 and the horizontal scale is narrowed to
X = 4.2 to x = 4.3. This plot shows clearly that a double root does not exist in this region
and that in fact there are two distinct roots at about x = 4.23 and x = 4.26.

Computer graphics will have great utility in your studies of numerical methods. This
capability will also find many other applications in your other classes and professional
activities as well.

5.2

THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed (Fig. 5.1) that
f(x) changed sign on opposite sides of the root. In general, if f(x) is real and continuous in
the interval from x, to x, and f(x;) and f(x,) have opposite signs, that is,

f(x) f(xy) <0 (5.1)
then there is at least one real root between x; and Xy.

Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. Then the location of the sign change (and consequently,
the root) is identified more precisely by dividing the interval into a number of subintervals.
Each of these subintervals is searched to locate the sign change. The process is repeated
and the root estimate refined by dividing the subintervals into finer increments. We will
return to the general topic of incremental searches in Sec. 5.4.

The bisection method, which is alternatively called binary chopping, interval halving,
or Bolzano’s method, is one type of incremental search method in which the interval is al-
ways divided in half. If a function changes sign over an interval, the function value at the
midpoint is evaluated. The location of the root is then determined as lying at the midpoint
of the subinterval within which the sign change occurs. The process is repeated to obtain
refined estimates. A simple algorithm for the bisection calculation is listed in Fig. 5.5, and
a graphical depiction of the method is provided in Fig. 5.6. The following example goes
through the actual computations involved in the method.

FIGURE 5.5

Step 1: Choose lower xj and upper x, guesses for the root such that the function changes
sign over the interval. This can be checked by ensuring that f{x)f(x,] < O.
Step 2: An esftimate of the root x; is defermined by

X+ Xy
2

Step 3: Make the following evaluations fo determine in which subinferval the root lies:
(a) If f{x)fix) < O, the root lies in the lower subinterval. Therefore, set x,= x, and
return to sfep 2.
(b) If fix)f(x) > O, the root lies in the upper subinterval. Therefore, set xj = x, and
return to step 2.
(c) If fix)f(x) = O, the root equals x;; ferminate the computation.

X, =

5.2 THE BISECTION METHOD 125

FIGURE 5.6

A graphical depiction of the
bisection method. This plot
conforms fo the first three ifera-
fions from Example 5.3.

EXAMPLE 5.3

Bisection

Problem Statement. Use bisection to solve the same problem approached graphically in
Example 5.1.

Solution. The first step in bisection is to guess two values of the unknown (in the present
problem, ¢) that give values for f(c) with different signs. From Fig. 5.1, we can see that the
function changes sign between values of 12 and 16. Therefore, the initial estimate of the
root x, lies at the midpoint of the interval

12416
===

14

r

This estimate represents a true percent relative error of &; = 5.3% (note that the true value
of the root is 14.7802). Next we compute the product of the function value at the lower
bound and at the midpoint:

f(12) f(14) = 6.067(1.569) = 9.517

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located between 14 and 16. Therefore, we
create a new interval by redefining the lower bound as 14 and determining a revised root
estimate as

_14+16

Xr > 15

which represents a true percent error of e = 1.5%. The process can be repeated to obtain
refined estimates. For example,

f(14) f(15) = 1.569(—0.425) = —0.666

126

BRACKETING METHODS

EXAMPLE 5.4

Therefore, the root is between 14 and 15. The upper bound is redefined as 15, and the root
estimate for the third iteration is calculated as

_14+15

X = ——— =145

which represents a percent relative error of &g = 1.9%. The method can be repeated until
the result is accurate enough to satisfy your needs.

In the previous example, you may have noticed that the true error does not decrease
with each iteration. However, the interval within which the root is located is halved with
each step in the process. As discussed in the next section, the interval width provides an
exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtain a
refined estimate of the root. We must now develop an objective criterion for deciding when
to terminate the method.

An initial suggestion might be to end the calculation when the true error falls below
some prespecified level. For instance, in Example 5.3, the relative error dropped from 5.3
to 1.9 percent during the course of the computation. We might decide that we should ter-
minate when the error drops below, say, 0.1 percent. This strategy is flawed because the
error estimates in the example were based on knowledge of the true root of the function.
This would not be the case in an actual situation because there would be no point in using
the method if we already knew the root.

Therefore, we require an error estimate that is not contingent on foreknowledge of the
root. As developed previously in Sec. 3.3, an approximate percent relative error e, can be
calculated, as in [recall Eg. (3.5)]

new old
X — Xy

100% (5.2)

Eq =

new
Xr

where x"®" is the root for the present iteration and x°! is the root from the previous itera-
tion. The absolute value is used because we are usually concerned with the magnitude of
&4 rather than with its sign. When e, becomes less than a prespecified stopping criterion &g,
the computation is terminated.

Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of s = 0.5%. Use Eq. (5.2) to compute the errors.

Solution. The results of the first two iterations for Example 5.3 were 14 and 15. Substi-

tuting these values into Eq. (5.2) yields

15— 14
15

lea] = ‘ ‘ 100% = 6.667%

5.2 THE BISECTION METHOD 127

Recall that the true percent relative error for the root estimate of 15 was 1.5%. Therefore,
&4 IS greater than &;. This behavior is manifested for the other iterations:

Iteration x| Xy X, £q (%) et (%)
1 12 16 14 5.279
2 14 16 15 6.667 1.487
3 14 15 14.5 3.448 1.896
4 14.5 15 14.75 1.695 0.204
5 14.75 15 14.875 0.840 0.641
6 14.75 14.875 14.8125 0.422 0.219

Thus, after six iterations g, finally falls below &5 = 0.5%, and the computation can be
terminated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due
to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered on
the true root. They are close when the true root falls at either end of the interval.

Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.7 suggests that &, captures the general downward trend of &;. In addition, the plot ex-
hibits the extremely attractive characteristic that ¢, is always greater than g;. Thus, when

FIGURE 5.7

Errors for the bisection method.

True and estimated errors are
plotted versus the number of
iterations.

10 —
Approximate
S
@
(]
2
K
e 1.0
=
[0}
2
(0]
o
| | | | |
0.1 0 3 6

Iterations

128 BRACKETING METHODS
&4 falls below &g, the computation could be terminated with confidence that the root is
known to be at least as accurate as the prespecified acceptable level.

Although it is always dangerous to draw general conclusions from a single example,
it can be demonstrated that e, will always be greater than g for the bisection method. This
is because each time an approximate root is located using bisection as X, = (X + Xu)/2,
we know that the true root lies somewhere within an interval of (x, — x)/2 = Ax/2.
Therefore, the root must lie within =Ax/2 of our estimate (Fig. 5.8). For instance, when
Example 5.3 was terminated, we could make the definitive statement that

Xr =145+05

Because Ax/2 = x"" — x% (Fig. 5.9), Eq. (5.2) provides an exact upper bound on
the true error. For this bound to be exceeded, the true root would have to fall outside the
bracketing interval, which, by definition, could never occur for the bisection method. As
illustrated in a subsequent example (Example 5.7), other root-locating techniques do not
always behave as nicely. Although bisection is generally slower than other methods, the

FIGURE 5.8
Three ways in which the interval X Xr Xy
may bracket the root. In (a) the () I & |
true value lies at the center of
the interval, whereas in (b) and
(c) the true value lies near the () Xl' Xr :
extreme. Notice that the U
discrepancy between the frue
value and the midpoint of the in- X, X, Xy
terval never exceeds half the (c) ¢ |
interval length, or Ax/2.
Ax/2 Ax/2
True root

FIGURE 5.9
Graphical depiction of why the Xnew _ xold
error estimate for bisection ———
[Ax/2) is equivalent to the root i i
eshmotg for the presenfltercnﬂon Previous iteration I ® : I
[xpew) minus the root estimate for o i
the previous iteration (x2d). Xr, !

: XlljeW

Present iteration : @ I
: :
I I

5.2 THE BISECTION METHOD 129

neatness of its error analysis is certainly a positive aspect that could make it attractive for
certain engineering applications.

Before proceeding to the computer program for bisection, we should note that the
relationships (Fig. 5.9)

od _ Xu—X

new
X — x¢ 5

r

and

X + Xy
XPeW — 2
can be substituted into Eq. (5.2) to develop an alternative formulation for the approximate
percent relative error

Xu — X

100% (5.3)

Eq =

Xu + X
This equation yields identical results to Eq. (5.2) for bisection. In addition, it allows us to
calculate an error estimate on the basis of our initial guesses—that is, on our first itera-
tion. For instance, on the first iteration of Example 5.2, an approximate error can be
computed as

16 — 12

a = |77
"7 l16+12
Another benefit of the bisection method is that the number of iterations required to at-

tain an absolute error can be computed a priori—that is, before starting the iterations. This
can be seen by recognizing that before starting the technique, the absolute error is

‘ 100% = 14.29%

E2=x{—x)=Ax°
where the superscript designates the iteration. Hence, before starting the method, we are at
the “zero iteration.” After the first iteration, the error becomes

AX°
El="""
2

Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations, n, is

AXO°
E] = on (5.4)
If E4q is the desired error, this equation can be solved for
log(AX®/Eaq) AXO
log 2 92<Ea.d> (5:9)

Let us test the formula. For Example 5.4, the initial interval was Axg = 16 — 12 = 4.
After six iterations, the absolute error was
_ |14.875 — 14.75]

Ea= — = 0.0625

130

BRACKETING METHODS

We can substitute these values into Eq. (5.5) to give

n — 109(4/0.0625) _
log 2

Thus, if we knew beforehand that an error of less than 0.0625 was acceptable, the formula
tells us that six iterations would yield the desired result.

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.5) can provide a
useful root-location algorithm. We will explore such applications in the end-of-chapter
problems.

5.2.2 Bisection Algorithm

The algorithm in Fig. 5.5 can now be expanded to include the error check (Fig. 5.10). The
algorithm employs user-defined functions to make root location and function evaluation
more efficient. In addition, an upper limit is placed on the number of iterations. Finally, an
error check is included to avoid division by zero during the error evaluation. Such would
be the case when the bracketing interval is centered on zero. For this situation Eq. (5.2) be-
comes infinite. If this occurs, the program skips over the error evaluation for that iteration.

The algorithm in Fig. 5.10 is not user-friendly; it is designed strictly to come up with
the answer. In Prob. 5.14 at the end of this chapter, you will have the task of making it eas-
ier to use and understand.

FIGURE 5.10
Pseudocode for function to
implement bisection.

FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
iter = 0
D0
xrold = xr
xr = (xI + xu) /2
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) = 100
END IF
test = f(x1) * f(xr)
IF test < 0 THEN

XU = Xr
ELSE IF test > 0 THEN
Xl = xr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO
Bisect = xr

END Bisect

5.2 THE BISECTION METHOD 131

5.2.3 Minimizing Function Evaluations

The bisection algorithm in Fig. 5.10 is just fine if you are performing a single root
evaluation for a function that is easy to evaluate. However, there are many instances in
engineering when this is not the case. For example, suppose that you develop a computer
program that must locate a root numerous times. In such cases you could call the
algorithm from Fig. 5.10 thousands and even millions of times in the course of a single
run.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for a single value you send to it. Perceived in this sense, functions
are not always simple formulas like the one-line equations solved in the preceding exam-
ples in this chapter. For example, a function might consist of many lines of code that could
take a significant amount of execution time to evaluate. In some cases, the function might
even represent an independent computer program.

Because of both these factors, it is imperative that numerical algorithms minimize
function evaluations. In this light, the algorithm from Fig. 5.10 is deficient. In particular,
notice that in making two function evaluations per iteration, it recalculates one of the func-
tions that was determined on the previous iteration.

Figure 5.11 provides a modified algorithm that does not have this deficiency. We have
highlighted the lines that differ from Fig. 5.10. In this case, only the new function value at

FIGURE 5.11

Pseudocode for bisection sub-
program which minimizes
function evaluations.

FUNCTION Bisect(x1, xu, es, imax, xr, iter, ea)
iter = 0
fl = f(xI)
Do
xrold = xr
xr = (xI + xu) /2
fr = f(xr)
iter = iter + 1
IF xr # 0 THEN
ea = ABS((xr — xrold) / xr) * 100
END IF
test = f1 * fr
IF test < 0 THEN

Xu = Xr
ELSE IF test > 0 THEN
Xl = xr
fl = fr
ELSE
ea =0
END IF
IF ea < es OR iter = imax EXIT
END DO

Bisect = xr
END Bisect

132

BRACKETING METHODS

5.3

the root estimate is calculated. Previously calculated values are saved and merely reassigned
as the bracket shrinks. Thus, n + 1 function evaluations are performed, rather than 2n.

THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force” ap-
proach is relatively inefficient. False position is an alternative based on a graphical insight.

A shortcoming of the bisection method is that, in dividing the interval from x, to x, into
equal halves, no account is taken of the magnitudes of f(x;) and f(x,). For example, if f(x;)
is much closer to zero than f(x,), it is likely that the root is closer to x than to x, (Fig. 5.12).
An alternative method that exploits this graphical insight is to join f(x;) and f(x,) by a
straight line. The intersection of this line with the x axis represents an improved estimate of
the root. The fact that the replacement of the curve by a straight line gives a “false position”
of the root is the origin of the name, method of false position, or in Latin, regula falsi. It is
also called the linear interpolation method.

Using similar triangles (Fig. 5.12), the intersection of the straight line with the x axis
can be estimated as

f(xp) f(xy)

= 5.6
Xr — X Xr — Xu ()
which can be solved for (see Box 5.1 for details).
fXu) (X1 — Xu)
=T TN fw) N
T) - o) o0
FIGURE 5.12
A grophico| depidion of the f(x)

method of false position. Similar
friangles used to derive the
formula for the method are

shaded.

f(x)

5.3 THE FALSE-POSITION METHOD 133

Box 5.1 Derivation of the Method of False Position

Cross-multiply Eq. (5.6) to yield then adding and subtracting x, on the right-hand side:
FO) O = xu) = FO) % = x1) g = x4 ufo0 o xfew)
Collect terms and rearrange: foa) = f(xw) foa) = f(xw)

X [FO0) — F(x0)] = %o (X)) — X1 F(xa) Collecting terms yields
Divide by f(x) — f(x,): X = x 4 X fx) xifx)
r u
foa) — fxo) o) — f(x)
X Fx) = % f(xw) B511
T o) — fx) ESLDor
This is one form of the method of false position. Note that it allows X = Xy — fx) i =)
the computation of the root x, as a function of the lower and upper f(x) — f(xu)

guesses x; and x,. It can be put in an alternative form by expanding

't which is the same as Eq. (5.7). We use this form because it involves
it:

one less function evaluation and one less multiplication than
_oxfox) o xfx) Eq. (B5.1.1). In addition, it is directly comparable with the secant
) — f(xe) fOx) = f(xu) method which will be discussed in Chap. 6.

r

This is the false-position formula. The value of x, computed with Eq. (5.7) then replaces
whichever of the two initial guesses, x; or x,, yields a function value with the same sign as
f(xy). In this way, the values of x; and x, always bracket the true root. The process is
repeated until the root is estimated adequately. The algorithm is identical to the one for bi-
section (Fig. 5.5) with the exception that Eq. (5.7) is used for step 2. In addition, the same
stopping criterion [Eq. (5.2)] is used to terminate the computation.

EXAMPLE 5.5 False Position

Problem Statement. Use the false-position method to determine the root of the same
equation investigated in Example 5.1 [Eq. (E5.1.1)].

Solution. As in Example 5.3, initiate the computation with guesses of x; = 12 and
Xy = 16.

First iteration:

X =12 f(x)) = 6.0699
Xy = 16 f(xy) = —2.2688
—2.2688(12 — 16)

Xr = 16 —
' 6.0669 — (—2.2688)

= 14.9113

which has a true relative error of 0.89 percent.

Second iteration:

f(x) f(x) = —1.5426

134

BRACKETING METHODS

Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the next
iteration, x, = 14.9113:

x| = 12 f(x) = 6.0699

xg = 14.9113 f(xy) = —0.2543

—0.2543(12 — 14.9113)
6.0669 — (—0.2543)

which has true and approximate relative errors of 0.09 and 0.79 percent. Additional itera-
tions can be performed to refine the estimate of the roots.

Xr = 14.9113 — = 14.7942

A feeling for the relative efficiency of the bisection and false-position methods can be
appreciated by referring to Fig. 5.13, where we have plotted the true percent relative errors
for Examples 5.4 and 5.5. Note how the error for false position decreases much faster than
for bisection because of the more efficient scheme for root location in the false-position
method.

Recall in the bisection method that the interval between x; and x, grew smaller during
the course of a computation. The interval, as defined by Ax/2 = |x, — X |/2 for the first
iteration, therefore provided a measure of the error for this approach. This is not the case

FIGURE 5.13

Comparison of the relative
errors of the bisection and the
false-position methods.

10 —

Bisection

107"

False position
1072 —

True percent relative error

1073 =

| | | | |
0 3 6

Iterations

5.3 THE FALSE-POSITION METHOD 135

EXAMPLE 5.6

for the method of false position because one of the initial guesses may stay fixed through-
out the computation as the other guess converges on the root. For instance, in Example 5.6
the lower guess x, remained at 12 while x, converged on the root. For such cases, the inter-
val does not shrink but rather approaches a constant value.

Example 5.6 suggests that Eq. (5.2) represents a very conservative error criterion. In
fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous
iteration. This is because for a case such as Example 5.6, where the method is converging
quickly (for example, the error is being reduced nearly an order of magnitude per
iteration), the root for the present iteration x[*" is a much better estimate of the true value
than the result of the previous iteration x%'. Thus, the quantity in the numerator of
Eqg. (5.2) actually represents the discrepancy of the previous iteration. Consequently, we
are assured that satisfaction of Eq. (5.2) ensures that the root will be known with greater
accuracy than the prescribed tolerance. However, as described in the next section, there
are cases where false position converges slowly. For these cases, Eq. (5.2) becomes unre-
liable, and an alternative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem to always be the bracketing method of
preference, there are cases where it performs poorly. In fact, as in the following example,
there are certain cases where bisection yields superior results.

A Case Where Bisection s Preferable to False Position

Problem Statement.

fox)=x*0 -1

Use bisection and false position to locate the root of

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as
lteration x| Xy x; £q (%) ¢ (%)
1 0 1.3 0.65 100.0 35
2 0.65 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 13.8
4 0.975 1.1375 1.05625 7.7 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2 percent. For false position,
a very different outcome is obtained:

Iteration x| Xy Xr £q (%) £4 (%)
] 0 1.3 0.09430 Q0.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 73.7
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 17.1 59.2

136

BRACKETING METHODS

f()

10

FIGURE 5.14
Plot of f(x) = x'0 — 1, illustrating slow convergence of the false-position method.

After five iterations, the true error has only been reduced to about 59 percent. In addi-
tion, note that ¢, < &;. Thus, the approximate error is misleading. Insight into these results
can be gained by examining a plot of the function. As in Fig. 5.14, the curve violates the
premise upon which false position was based—that is, if f(x;) is much closer to zero than
f(xy), then the root is closer to x; than to x, (recall Fig. 5.12). Because of the shape of the
present function, the opposite is true.

The forgoing example illustrates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often supe-
rior to bisection, there are invariably cases that violate this general conclusion. Therefore,
in addition to using Eq. (5.2), the results should always be checked by substituting the root
estimate into the original equation and determining whether the result is close to zero. Such
a check should be incorporated into all computer programs for root location.

The example also illustrates a major weakness of the false-position method: its one-
sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to

5.3 THE FALSE-POSITION METHOD 137

stay fixed. This can lead to poor convergence, particularly for functions with significant
curvature. The following section provides a remedy.

5.3.2 Modified False Position

One way to mitigate the “one-sided” nature of false position is to have the algorithm detect
when one of the bounds is stuck. If this occurs, the function value at the stagnant bound can
be divided in half. This is called the modified false-position method.

The algorithm in Fig. 5.15 implements this strategy. Notice how counters are used to
determine when one of the bounds stays fixed for two iterations. If this occurs, the function
value at this stagnant bound is halved.

The effectiveness of this algorithm can be demonstrated by applying it to Example 5.6.
If a stopping criterion of 0.01% is used, the bisection and standard false-position methods

FIGURE 5.15
Pseudocode for the modified
false-position method.

FUNCTION ModFalsePos(x1, xu, es, imax, xr, iter, ea)
iter = 0
fl = f(x1)
fu = f(xu)
Do
xrold = xr
Xr=xu— fu* (xI — xu) / (fl — fu)
fr = f(xr)
iter = iter + 1
IF xr <> 0 THEN
ea = Abs((xr — xrold) / xr) * 100
END IF
test = f1 * fr
IF test < 0 THEN

Xu = xr
fu = f(xu)
iu=20

il =17l + 1

If 71 = 2 THEN f1 = f1 / 2
ELSE IF test > 0 THEN

xI = xr
fl = f(xI)
il =20

u=1iu+1
IF iu= 2 THEN fu = fu / 2
ELSE
ea =0
END IF
IF ea < es OR iter = imax THEN EXIT
END DO
ModFalsePos = xr
END ModFalsePos

138

BRACKETING METHODS

3.4

would converge in 14 and 39 iterations, respectively. In contrast, the modified false-
position method would converge in 12 iterations. Thus, for this example, it is somewnhat
more efficient than bisection and is vastly superior to the unmodified false-position
method.

INCREMENTAL SEARCHES AND DETERMINING
INITIAL GUESSES

Besides checking an individual answer, you must determine whether all possible roots have
been located. As mentioned previously, a plot of the function is usually very useful in guid-
ing you in this task. Another option is to incorporate an incremental search at the beginning
of the computer program. This consists of starting at one end of the region of interest and
then making function evaluations at small increments across the region. When the function
changes sign, it is assumed that a root falls within the increment. The x values at the be-
ginning and the end of the increment can then serve as the initial guesses for one of the
bracketing techniques described in this chapter.

A potential problem with an incremental search is the choice of the increment length.
If the length is too small, the search can be very time consuming. On the other hand, if the
length is too great, there is a possibility that closely spaced roots might be missed
(Fig. 5.16). The problem is compounded by the possible existence of multiple roots. A par-
tial remedy for such cases is to compute the first derivative of the function f/(x) at the
beginning and the end of each interval. If the derivative changes sign, it suggests that a
minimum or maximum may have occurred and that the interval should be examined more
closely for the existence of a possible root.

Although such modifications or the employment of a very fine increment can alleviate
the problem, it should be clear that brute-force methods such as incremental search are not
foolproof. You would be wise to supplement such automatic techniques with any other
information that provides insight into the location of the roots. Such information can be
found in plotting and in understanding the physical problem from which the equation
originated.

FIGURE 5.16

Cases where roots could be
missed because the increment
length of the search procedure
is too large. Note that the last
roof on the right is mulfiple and
would be missed regardless of
increment length.

f(x)

PROBLEMS

139

PROBLEMS

5.1 Determine the real roots of f(x) = —0.6x2 + 2.4x + 5.5:

(a) Graphically.

(b) Using the quadratic formula.

(c) Using three iterations of the bisection method to determine
the highest root. Employ initial guesses of x; = 5 and x, = 10.
Compute the estimated error ;4 and the true error g; after each
iteration.

5.2 Determine the real root of f(x) = 4x% — 6x% + 7x — 2.3:

(a) Graphically.

(b) Using bisection to locate the root. Employ initial guesses of
X} = 0 and x, = 1 and iterate until the estimated error ¢, falls
below a level of &5 = 10%.

5.3 Determine the real root of f(x)= —26+ 85x — 91x2 +

44x3 — 8x* + x5:

(a) Graphically.

(b) Using bisection to determine the root to es = 10%. Employ ini-
tial guesses of x; = 0.5 and x, = 1.0.

(c) Perform the same computation as in (b) but use the false-
position method and es = 0.2 %.

5.4 (a) Determine the roots of f(x) = —13 — 20x + 19x?> — 3x3

graphically. In addition, determine the first root of the function with

(b) bisection, and (c) false position. For (b) and (c) use initial

guesses of x; = —1 and x, = 0, and a stopping criterion of 1%.

5.5 Locate the first nontrivial root of sin x = x3, where x is in

radians. Use a graphical technique and bisection with the initial

interval from 0.5 to 1. Perform the computation until , is less than
es = 2%. Also perform an error check by substituting your final
answer into the original equation.

5.6 Determine the positive real root of In (x*) = 0.7 (a) graphi-

cally, (b) using three iterations of the bisection method, with initial

guesses of x; = 0.5 and x, = 2, and (c) using three iterations of the

false-position method, with the same initial guesses as in (b).

5.7 Determine the real root of f(x) = (0.8 — 0.3x)/x:

(a) Analytically.

(b) Graphically.

(c) Using three iterations of the false-position method and initial
guesses of 1 and 3. Compute the approximate error £, and the true
error ¢ after each iteration. Is there a problem with the result?

5.8 Find the positive square root of 18 using the false-position

method to within &5 = 0.5%. Employ initial guesses of x; = 4 and

Xy = 5.

5.9 Find the smallest positive root of the function (x is in radians)

x2 |cos /x| =5 using the false-position method. To locate the

region in which the root lies, first plot this function for values of x

between 0 and 5. Perform the computation until ¢, falls below

&s = 1%. Check your final answer by substituting it into the origi-

nal function.

5.10 Find the positive real root of f(x) = x* —8x% — 35x? +
450x — 1001 using the false-position method. Use initial guesses
of x; = 4.5 and x, = 6 and performs five iterations. Compute both
the true and approximate errors based on the fact that the root is
5.60979. Use a plot to explain your results and perform the compu-
tation to within &5 = 1.0%.

5.11 Determine the real root of x35 = 80: (a) analytically, and
(b) with the false-position method to within s = 2.5%. Use initial
guesses of 2.0 and 5.0.

5.12 Given

f(x) = —2x8 —1.6x* +12x +1

Use bisection to determine the maximum of this function. Employ
initial guesses of x; = 0 and x, = 1, and perform iterations until
the approximate relative error falls below 5%.
5.13 The velocity v of a falling parachutist is given by

v= % (1 —e-c/mt)
where g = 9.8 m/s?. For a parachutist with a drag coefficient
¢ = 15 kg/s, compute the mass m so that the velocity is v = 35 m/s
att=9s. Use the false-position method to determine m to a level
of &5 = 0.1%.
5.14 Use bisection to determine the drag coefficient needed so that
an 80-kg parachutist has a velocity of 36 m/s after 4 s of free fall.
Note: The acceleration of gravity is 9.81 m/s?. Start with initial
guesses of x; = 0.1 and x, = 0.2 and iterate until the approximate
relative error falls below 2%.
5.15 A beam is loaded as shown in Fig. P5.15. Use the bisection
method to solve for the position inside the beam where there is no
moment.

100 Ib/ft 100 Ib

Figure P5.15

5.16 Water is flowing in a trapezoidal channel at a rate of Q =
20 m¥s. The critical depth y for such a channel must satisfy the
equation

QZ

0=1-—
gA3

B

140 BRACKETING METHODS

where g = 9.81 m/s?, A, = the cross-sectional area (m?), and B =
the width of the channel at the surface (m). For this case, the width
and the cross-sectional area can be related to depth y by

2
Ac=3y+y—

and
2

B=3+y

Solve for the critical depth using (a) the graphical method, (b) bi-
section, and (c) false position. For (b) and (c) use initial guesses of
x; = 0.5 and xy, = 2.5, and iterate until the approximate error falls
below 1% or the number of iterations exceeds 10. Discuss your
results.

5.17 You are designing a spherical tank (Fig. P5.17) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

v =2 BR =N

where V = volume [m®], h = depth of water in tank [m], and R =
the tank radius [m].

T
1)

Figure P5.17

If R = 3 m, to what depth must the tank be filled so that it holds
30 m®? Use three iterations of the false-position method to deter-
mine your answer. Determine the approximate relative error after
each iteration. Employ initial guesses of 0 and R.

5.18 The saturation concentration of dissolved oxygen in fresh-
water can be calculated with the equation (APHA, 1992)

1.575701 x 10° ~ 6.642308 x 107
Ta T2

1.243800 x 10%° 8.621949 x 10
TS Ta

Inoss = —139.34411 +

where oss = the saturation concentration of dissolved oxygen in

freshwater at 1 atm (mg/L) and T, = absolute temperature (K).

Remember that T, = T + 273.15, where T = temperature (°C).

According to this equation, saturation decreases with increasing

temperature. For typical natural waters in temperate climates, the

equation can be used to determine that oxygen concentration

ranges from 14.621 mg/L at 0°C to 6.413 mg/L at 40°C. Given a

value of oxygen concentration, this formula and the bisection

method can be used to solve for temperature in °C.

(a) If the initial guesses are set as 0 and 40°C, how many bisection
iterations would be required to determine temperature to an
absolute error of 0.05°C?

(b) Develop and test a bisection program to determine T as a func-
tion of a given oxygen concentration to a prespecified absolute
error as in (a). Given initial guesses of 0 and 40°C, test your
program for an absolute error = 0.05°C and the following
cases: 0s = 8, 10 and 12 mg/L. Check your results.

5.19 Areversible chemical reaction

2A+B —~C
can be characterized by the equilibrium relationship
"~ c2cy

where the nomenclature c; represents the concentration of con-
stituent i. Suppose that we define a variable x as representing the
number of moles of C that are produced. Conservation of mass can
be used to reformulate the equilibrium relationship as

_ (Cc,0 +X)
(Ca,0 — 2X)%(Cp0 — X)

where the subscript 0 designates the initial concentration of each
constituent. If K =0.016, ca0 =42, cpo =28, and cco =4,
determine the value of x. (a) Obtain the solution graphically. (b) On
the basis of (@), solve for the root with initial guesses of x; = 0 and
Xy = 20 to s = 0.5%. Choose either bisection or false position to
obtain your solution. Justify your choice.

5.20 Figure P5.20a shows a uniform beam subject to a linearly
increasing distributed load. The equation for the resulting elastic
curve is (see Fig. P5.20b)

Wo
~ 120EIL

y (=x5 42123 — L*%) (P5.20)

PROBLEMS

141

A
L
@
(x=1L,y=0)
M
|
(b)

Figure P5.20

Use bisection to determine the point of maximum deflection (that is,
the value of x where dy/dx = 0). Then substitute this value into
Eq. (P5.20) to determine the value of the maximum deflection. Use
the following parameter values in your computation: L = 600 cm,
E = 50,000 kN/cm?, 1 = 30,000 cm?, and wg = 2.5 kN/cm.
5.21 You buy a $25,000 piece of equipment for nothing down and
$5,500 per year for 6 years. What interest rate are you paying? The
formula relating present worth P, annual payments A, number of
years n, and interest rate i is

id+"
1+ -1
5.22 Many fields of engineering require accurate population esti-
mates. For example, transportation engineers might find it necessary
to determine separately the population growth trends of a city and
adjacent suburb. The population of the urban area is declining with
time according to

A=

Pu(t) = Pu,max37kut + Pumin

while the suburban population is growing, as in

Ps,max

Ps(t) =
5 1+ [Ps,max/PO - 1](:3_kSt

where Py max, Ku, Ps.max, Po, and ks = empirically derived para-
meters. Determine the time and corresponding values of P(t) and
P4(t) when the suburbs are 20% larger than the city. The parameter
values are Py max = 75,000, k, =0.045/yr, Py min = 100,000
people, Psmax = 300,000 people, Py = 10,000 people, ks=
0.08/yr. To obtain your solutions, use (a) graphical and (b) false-
position methods.

5.23 Integrate the algorithm outlined in Fig. 5.10 into a complete,

user-friendly bisection subprogram. Among other things:

(a) Place documentation statements throughout the subprogram to
identify what each section is intended to accomplish.

(b) Label the input and output.

(c) Add an answer check that substitutes the root estimate into the
original function to verify whether the final result is close to zero.

(d) Test the subprogram by duplicating the computations from
Examples 5.3 and 5.4.

5.24 Develop a subprogram for the bisection method that mini-

mizes function evaluations based on the pseudocode from Fig. 5.11.

Determine the number of function evaluations (n) per total itera-

tions. Test the program by duplicating Example 5.6.

5.25 Develop a user-friendly program for the false-position

method. The structure of your program should be similar to the

bisection algorithm outlined in Fig. 5.10. Test the program by

duplicating Example 5.5.

5.26 Develop a subprogram for the false-position method that

minimizes function evaluations in a fashion similar to Fig. 5.11.

Determine the number of function evaluations (n) per total itera-

tions. Test the program by duplicating Example 5.6.

5.27 Develop a user-friendly subprogram for the modified false-

position method based on Fig. 5.15. Test the program by determin-

ing the root of the function described in Example 5.6. Perform a

number of runs until the true percent relative error falls below

0.01%. Plot the true and approximate percent relative errors versus

number of iterations on semilog paper. Interpret your results.

5.28 Develop a function for bisection in a similar fashion to

Fig. 5.10. However, rather than using the maximum iterations and

Eqg. (5.2), employ Eq. (5.5) as your stopping criterion. Make sure to

round the result of Eq. (5.5) up to the next highest integer. Test your

function by solving Example 5.3 using E, ¢ = 0.0001.

CHAPTER

Open Methods

For the bracketing methods in Chap. 5, the root is located within an interval prescribed by
a lower and an upper bound. Repeated application of these methods always results in closer
estimates of the true value of the root. Such methods are said to be convergent because they
move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas that
require only a single starting value of x or two starting values that do not necessarily bracket

FIGURE 6.1

Graphical depiction of the
fundamental difference between
the (a) bracketing and (b] and
[c) open methods for roof
location. In (a), which is the
bisection method, the root is
constrained within the interval
prescribed by x, and x,. In
contrast, for the open method
depicted in (b) and [d), a
formula is used to project from
Xj fo Xj41 in an iterative fashion.
Thus, the method can either (b)
diverge or (c) converge rapidly,
depending on the value of the
initial guess.

142

10 (4
| |
X X X
a b
. @ (b)
——— ()
X X
—e—
X%
o—
X%,
o]

6.1 SIMPLE FIXED-POINT ITERATION 143

6.1

EXAMPLE 6.1

the root. As such, they sometimes diverge or move away from the true root as the
computation progresses (Fig. 6.1b). However, when the open methods converge (Fig. 6.1c),
they usually do so much more quickly than the bracketing methods. We will begin our dis-
cussion of open techniques with a simple version that is useful for illustrating their general
form and also for demonstrating the concept of convergence.

SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formula
can be developed for simple fixed-point iteration (or, as it is also called, one-point iteration
or successive substitution) by rearranging the function f(x) = 0 so that x is on the left-hand
side of the equation:

X = g(X) (6.1)

This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation. For example,

x> —2x4+3=0
can be simply manipulated to yield

X_x2+3
2

whereas sin x = 0 could be put into the form of Eq. (6.1) by adding x to both sides to yield
X =sinX + X

The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as a
function of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) can be used
to compute a new estimate x; 1 as expressed by the iterative formula

Xit+1 = 0g(X) (6.2)

As with other iterative formulas in this book, the approximate error for this equation can be
determined using the error estimator [Eq. (3.5)]:

Xivr — X 100%

Eaq =

Xi+1

Simple Fixed-Point lteration
Problem Statement. Use simple fixed-point iteration to locate the root of f(x) = e X — x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

Xit1 =€

144

OPEN METHODS

EXAMPLE 6.2

Starting with an initial guess of Xy = 0, this iterative equation can be applied to compute

i xi £a (%) €1 (%)
0 0 100.0

1 1.000000 100.0 76.3

2 0.367879 171.8 35.1

3 0.692201 46.9 22.1

4 0.500473 38.3 11.8

5 0.606244 17.4 6.89
6 0.545396 11.2 3.83
7 0.579612 5.90 2.20
8 0.560115 3.48 1.24
9 0.571143 1.93 0.705
10 0.564879 1.11 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

6.1.1 Convergence

Notice that the true percent relative error for each iteration of Example 6.1 is roughly pro-
portional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This prop-
erty, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the
“possibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure and be-
havior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function f(x) =
e * — x. An alternative graphical approach is to separate the equation into two component
parts, as in

f100) = f2(%)
Then the two equations

y1 = f1(%) (6.3)
and

Y2 = f2(%) (6.4)
can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of f(x) = 0.
The Two-Curve Graphical Method

Problem Statement. Separate the equation e — x = 0 into two parts and determine its
root graphically.

Solution. Reformulate the equation as y; = x and y, = € X The following values can
be computed:

6.1 SIMPLE FIXED-POINT ITERATION 145

X n Y2

0.0 0.0 1.000
0.2 0.2 0.819
0.4 0.4 0.670
0.6 0.6 0.549
0.8 0.8 0.449
1.0 1.0 0.368

These points are plotted in Fig. 6.2b. The intersection of the two curves indicates a root
estimate of approximately x = 0.57, which corresponds to the point where the single curve
in Fig. 6.2a crosses the x axis.

FIGURE 6.2
Two alternative graphical methods for determining the root of f(x) = e™ — x. (a) Root af the
point where it crosses the x axis; (b) root at the infersection of the component functions.

f(x)
Root
X
@

f(x)

fi(¢) = x

fo(x) = e*

Root

146

OPEN METHODS

The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be re-expressed as a pair of equations y; = X
and y, = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.3) and (6.4), the roots of f(X) = 0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y; = x and four different shapes for y, = g(x) are plot-
ted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of xo is used to determine the correspond-
ing point on the y, curve [Xo, 9(Xo)]. The point (x3, X;) is located by moving left horizontally
to the y; curve. These movements are equivalent to the first iteration in the fixed-point
method:

X1 = g(Xo)

Thus, in both the equation and in the plot, a starting value of X, is used to obtain an estimate
of x;. The next iteration consists of moving to [x1, g(x;)] and then to (xp, X2). This iteration

FIGURE 6.3

Graphical depiction of [a) and
[b) convergence and (c) and (d)
divergence of simple fixed-point
iteration. Graphs (a) and (¢} are
called monotone patterns,
whereas (b) and (d) are called
oscillating or spiral patterns.
Note that convergence occurs
when [g'(x)| < 1.

y y
y, = X Y1 =X
Y, = 9(x) \

) ¥> = 9(¥)

Lo

| |

| |

| |

L L

X X X X % X

(@ (b)
y y
Yo = 9(¥) Y, = 9(¥)
Y1 =X
Yy =X
Xy X Xo X

(0 (d)

6.1 SIMPLE FIXED-POINT ITERATION

147

Box 6.1

From studying Fig. 6.3, it should be clear that fixed-point iteration
converges if, in the region of interest, |g'(X)| < 1. In other words,
convergence occurs if the magnitude of the slope of g(x) is less
than the slope of the line f(x) = x. This observation can be demon-
strated theoretically. Recall that the iterative equation is

Xi+1 = 9g(X)

Suppose that the true solution is
X = g(%)

Subtracting these equations yields

X — Xit1 = g(%) — g(%) (B6.1.1)

The derivative mean-value theorem (recall Sec. 4.1.1) states that if
a function g(x) and its first derivative are continuous over an inter-
val a < x < b, then there exists at least one value of x = & within
the interval such that

g(b) —g@
b—a

The right-hand side of this equation is the slope of the line joining
g(a) and g(b). Thus, the mean-value theorem states that there is at
least one point between aand b that has a slope, designated by g’ (§),
which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

ge© = (B6.1.2)

is equivalent to the equation

X2 = g(X1)

Convergence of Fixed-Point Iteration

Now, if we let a=x and b= x, the right-hand side of Eq.
(B6.1.1) can be expressed as

g(x) —g(x) = (X —x)g' (&)

where & is somewhere between X and x,. This result can then be
substituted into Eq. (B6.1.1) to yield

X — Xiy1 = (X — %) (§) (B6.1.3)

If the true error for iteration i is defined as
Eii =% —X

then Eq. (B6.1.3) becomes
Eriv1 =g'(§)E

Consequently, if |g'(X)| < 1, the errors decrease with each iteration.
For |g'(x)| > 1, the errors grow. Notice also that if the derivative is
positive, the errors will be positive, and hence, the iterative solution
will be monotonic (Fig. 6.3a and c). If the derivative is negative,
the errors will oscillate (Fig. 6.3b and d).

An offshoot of the analysis is that it also demonstrates that when
the method converges, the error is roughly proportional to and less
than the error of the previous step. For this reason, simple fixed-
point iteration is said to be linearly convergent.

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case for
Fig. 6.3c and d, where the iterations diverge from the root. Notice that convergence
seems to occur only when the absolute value of the slope of y, = g(x) is less than the
slope of y; =X, that is, when |g'(x)| < 1. Box 6.1 provides a theoretical derivation of

this result.

6.1.2 Algorithm for Fixed-Point lteration

The computer algorithm for fixed-point iteration is extremely simple. It consists of a loop
to iteratively compute new estimates until the termination criterion has been met. Figure 6.4
presents pseudocode for the algorithm. Other open methods can be programmed in a simi-
lar way, the major modification being to change the iterative formula that is used to compute

the new root estimate.

148

OPEN METHODS

FIGURE 6.4
Pseudocode for fixed-point
iteration. Note that other open

FUNCTION Fixpt(x0, es, imax, iter, ea)
xr = x0
iter =0
Do
xrold = xr
xr = g(xrold)
iter =iter + 1
IF xr # 0 THEN

xr — xrold
ea = —
Xxr

‘-100

END IF
IF ea < es OR iter = imax EXIT
END DO

methods can be cast in this Fixpt = xr
general format. END Fixpt
f(x)

FIGURE 6.5

Craphical depiction of the
Newton-Raphson method.

A tangent fo the function of x;
[that is, F(x]] is extrapolated
down to the x axis o provide
an estimate of the root at Xit1.

Slope = f'(x)
i((9) |Fmmmm e e e ——

6.2

THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-
tion (Fig. 6.5). If the initial guess at the root is x;, a tangent can be extended from the point
[xi, f(x)]. The point where this tangent crosses the x axis usually represents an improved

estimate of the root.

6.2 THE NEWTON-RAPHSON METHOD 149

EXAMPLE 6.3

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation (an alternative method based on the Taylor series is described in Box 6.2). As in

Fig. 6.5, the first derivative at x is equivalent to the slope:
f(Xi) -0
fi(x) = ———— 6.5
(%) X — X1 (6.5)

which can be rearranged to yield

f(xi)
f/(x)

Xit1 = X — (6.6)

which is called the Newton-Raphson formula.

Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) =
e X — x, employing an initial guess of xo = 0.

Solution. The first derivative of the function can be evaluated as
f(x)y=—e*-1
which can be substituted along with the original function into Eq. (6.6) to give
el —X

Xig1 =X — ————
i+1 i —ex —1

Starting with an initial guess of xo = 0, this iterative equation can be applied to compute

i xi er (%)

0 0 100

] 0.500000000 1.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 <10-®

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In ad-
dition, however, the Taylor series derivation of the method (Box 6.2) provides theoretical
insight regarding the rate of convergence as expressed by E; 1 = O(E?). Thus the error
should be roughly proportional to the square of the previous error. In other words, the

150 OPEN METHODS

Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

Aside from the geometric derivation [Egs. (6.5) and (6.6)], the
Newton-Raphson method may also be developed from the Taylor
series expansion. This alternative derivation is useful in that it also
provides insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be rep-
resented as

f(Xip1) = T06) + T/ Xiv1 — %)

f()

+2!

(Xit1 — %) (B6.2.1)

where & lies somewhere in the interval from x; to x; 1. An approxi-
mate version is obtainable by truncating the series after the first
derivative term:

f(Xip1) = FO6) + /) iy — X))
At the intersection with the x axis, f(x,1) would be equal to
zero, or

0= f(x)+ /(X)) (Xip1 — %) (B6.2.2)

which can be solved for

f(x)

Xit1 =X — 706
1

which is identical to Eq. (6.6). Thus, we have derived the Newton-
Raphson formula using a Taylor series.

Aside from the derivation, the Taylor series can also be used to
estimate the error of the formula. This can be done by realizing that
if the complete Taylor series were employed, an exact result would

be obtained. For this situation x; ;1 = X, where X is the true value
of the root. Substituting this value along with f(x;) =0 into
Eq. (B6.2.1) yields

f7(&)

0= f00) + F'O0)0 —x) + —= 06 —x)? (B6.2.3)
Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give
f//
0= f"(x)% —Xi+1) + ﬁ(xr - x)° (B6.2.4)

2!

Now, realize that the error is equal to the discrepancy between X;1
and the true value X, as in

Erivi =% — X1
and Eq. (B6.2.4) can be expressed as

f//
0= f"(x)Etis1+ ﬁEtz.i

T (B6.2.5)

If we assume convergence, both x; and & should eventually be ap-
proximated by the root x;, and Eq. (B6.2.5) can be rearranged to
yield

—) o
2/ (%)

According to Eq. (B6.2.6), the error is roughly proportional to the
square of the previous error. This means that the number of correct
decimal places approximately doubles with each iteration. Such
behavior is referred to as quadratic convergence. Example 6.4
manifests this property.

Et,i+1 = (B6.2.6)

number of significant figures of accuracy approximately doubles with each iteration. This
behavior is examined in the following example.

EXAMPLE 6.4

Problem Statement.

error, as in

— 100 o
Epipg = :
YT 20

Solution.

f'fx)=—e*-1

Error Analysis of Newton-Raphson Method

As derived in Box 6.2, the Newton-Raphson method is quadrati-
cally convergent. That is, the error is roughly proportional to the square of the previous

(E6.4.1)

Examine this formula and see if it applies to the results of Example 6.3.

The first derivative of f(X) = € * — xis

6.2 THE NEWTON-RAPHSON METHOD 151

EXAMPLE 6.5

which can be evaluated at x, = 0.56714329 as ’(0.56714329) = —1.56714329. The
second derivative is

f//(x) — e—X

which can be evaluated as f”(0.56714329) = 0.56714329. These results can be substituted
into Eq. (E6.4.1) to yield
0.56714329

Eijng = ——— " FE2 —0.18095E7,
L 2(—1.56714329) i

From Example 6.3, the initial error was E; o = 0.56714329, which can be substituted into
the error equation to predict

E.1 = 0.18095(0.56714329)% = 0.0582

which is close to the true error of 0.06714329. For the next iteration,
B, = 0.18095(0.06714329)? = 0.0008158

which also compares favorably with the true error of 0.0008323. For the third iteration,
E.3 = 0.18095(0.0008323)? = 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner
because, as we come closer to the root, x and & are better approximated by x [recall our
assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

E.4 = 0.18095(0.000000125)? = 2.83 x 10~1°

Thus, this example illustrates that the error of the Newton-Raphson method for this case is,
in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the pre-
vious iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where it
performs poorly. A special case—multiple roots—will be addressed later in this chapter.
However, even when dealing with simple roots, difficulties can also arise, as in the follow-
ing example.

Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f(x) = x° — 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is
x10 —1
10x?

which can be used to compute

Xit1 =X —

152 OPEN METHODS

Iteration x
0 0.5
1 51.65
2 46.485
3 41.8365
4 37.65285
5 33.887565
00 1.0000000

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection
point [that is, f”(x) = 0] occurs in the vicinity of a root. Notice that iterations beginning at
Xo progressively diverge from the root. Figure 6.6b illustrates the tendency of the Newton-
Raphson technique to oscillate around a local maximum or minimum. Such oscillations
may persist, or as in Fig. 6.6b, a near-zero slope is reached, whereupon the solution is sent
far from the area of interest. Figure 6.6¢ shows how an initial guess that is close to one root
can jump to a location several roots away. This tendency to move away from the area of
interest is because near-zero slopes are encountered. Obviously, a zero slope [f'(x) = 0] is
truly a disaster because it causes division by zero in the Newton-Raphson formula
[Eq. (6.6)]. Graphically (see Fig 6.6d), it means that the solution shoots off horizontally
and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some
functions, no guess will work! Good guesses are usually predicated on knowledge of the
physical problem setting or on devices such as graphs that provide insight into the behav-
ior of the solution. The lack of a general convergence criterion also suggests that good
computer software should be designed to recognize slow convergence or divergence. The
next section addresses some of these issues.

6.2.3 Algorithm for Newton-Raphson

An algorithm for the Newton-Raphson method is readily obtained by substituting Eq. (6.6)
for the predictive formula [Eq. (6.2)] in Fig. 6.4. Note, however, that the program must
also be modified to compute the first derivative. This can be simply accomplished by the
inclusion of a user-defined function.

Additionally, in light of the foregoing discussion of potential problems of the Newton-
Raphson method, the program would be improved by incorporating several additional
features:

6.2 THE NEWTON-RAPHSON METHOD 153

£(%)

@

f(3)

()

~N
©
£()
):0 Xy 2
(d)

FIGURE 6.6
Four cases where the Newton-Raphson method exhibits poor convergence.

154

OPEN METHODS

6.3

=

A plotting routine should be included in the program.

2. At the end of the computation, the final root estimate should always be substituted into
the original function to compute whether the result is close to zero. This check partially
guards against those cases where slow or oscillating convergence may lead to a small
value of &5 while the solution is still far from a root.

3. The program should always include an upper limit on the number of iterations to guard
against oscillating, slowly convergent, or divergent solutions that could persist inter-
minably.

4. The program should alert the user and take account of the possibility that f’(x) might

equal zero at any time during the computation.

THE SECANT METHOD

A potential problem in implementing the Newton-Raphson method is the evaluation of the
derivative. Although this is not inconvenient for polynomials and many other functions,
there are certain functions whose derivatives may be extremely difficult or inconvenient to
evaluate. For these cases, the derivative can be approximated by a backward finite divided
difference, as in (Fig. 6.7)

f(xi—1) — f(x)
Xi—1 — X

f'(x) =

FIGURE 6.7

Graphical depiction of the secant method. This technique is similar fo the NewtonRaphson tech-
nique (Fig. 6.5] in the sense that an estimate of the root is predicted by extrapolating a tangent
of the function to the x axis. However, the secant method uses a difference rather than a deriva-
five fo estimate the slope.

f(x)

f(x;)

f(xi-4)

6.3 THE SECANT METHOD 155

EXAMPLE 6.6

This approximation can be substituted into Eq. (6.6) to yield the following iterative
equation:

f(Xi)(Xi—1 — Xi)

_ 6.7
f(x—1) — (%) ©1

Xit1 = X —

Equation (6.7) is the formula for the secant method. Notice that the approach requires two
initial estimates of x. However, because f(x) is not required to change signs between the
estimates, it is not classified as a bracketing method.

The Secant Method

Problem Statement. Use the secant method to estimate the root of f(x) = e — x. Start
with initial estimates of x_; = 0 and x; = 1.0.

Solution. Recall that the true root is 0.56714329. . . .
First iteration:

X_.1 =0 f(x_1) = 1.00000

Xo=1 f(xg) = —0.63212
—0.63212(0 — 1)
1—(—0.63212)
Second iteration:

Xp=1-— = 0.61270 & = 8.0%

Xo=1 f(xg) = —0.63212
X, = 0.61270 f(x;) = —0.07081

(Note that both estimates are now on the same side of the root.)

—0.07081(1 — 0.61270)
— 061270 — — 0.56384 — 0.58%
X —0.63212 — (—0.07081) & °

Third iteration:
x; = 0.61270 f(xq) = —0.07081
X, = 0.56384 f(x2) = 0.00518
0.00518(0.61270 — 0.56384)

— 056384 — — 0.56717 — 0.0048%
X —0.07081 — (—0.00518) . °

6.3.1 The Difference Between the Secant and False-Position Methods

Note the similarity between the secant method and the false-position method. For example,
Egs. (6.7) and (5.7) are identical on a term-by-term basis. Both use two initial estimates to
compute an approximation of the slope of the function that is used to project to the x axis
for a new estimate of the root. However, a critical difference between the methods is how

156

OPEN METHODS

EXAMPLE 6.7

one of the initial values is replaced by the new estimate. Recall that in the false-position
method the latest estimate of the root replaces whichever of the original values yielded a
function value with the same sign as f(x;). Consequently, the two estimates always bracket
the root. Therefore, for all practical purposes, the method always converges because the
root is kept within the bracket. In contrast, the secant method replaces the values in strict
sequence, with the new value X, replacing x; and x; replacing x,_i. As a result, the two
values can sometimes lie on the same side of the root. For certain cases, this can lead to
divergence.

Comparison of Convergence of the Secant and False-Position Techniques

Problem Statement. Use the false-position and secant methods to estimate the root of
f(X) = In x. Start the computation with values of x, = x,_; = 0.5 and x, = X, = 5.0.

FIGURE 6.8

Comparison of the false-position and the secant methods. The first iterations (a) and (b) for both
techniques are identical. However, for the second iterations (c) and [d), the points used differ. As
a consequence, the secant method can diverge, as indicated in (d).

False position Secant
f(X) f(xy) f(x) f(x;)
X X
f(x)
(@
f(X)
f(x,)
X, X
f(x)

(© (d)

6.3 THE SECANT METHOD 157

Solution. For the false-position method, the use of Eg. (5.7) and the bracketing criterion
for replacing estimates results in the following iterations:

Iteration x| Xy X,
1 0.5 5.0 1.8546
2 0.5 1.8546 1.2163
3 0.5 1.2163 1.0585

As can be seen (Fig. 6.8a and c), the estimates are converging on the true root which is
equal to 1.

For the secant method, using Eq. (6.7) and the sequential criterion for replacing esti-
mates results in

Iteration X1 x; X
1 0.5 5.0 1.8546
2 5.0 1.8546 —0.10438

As in Fig. 6.8d, the approach is divergent.

Although the secant method may be divergent, when it converges it usually does so at
a quicker rate than the false-position method. For instance, Fig. 6.9 demonstrates the supe-
riority of the secant method in this regard. The inferiority of the false-position method is
due to one end staying fixed to maintain the bracketing of the root. This property, which is
an advantage in that it prevents divergence, is a shortcoming with regard to the rate of con-
vergence; it makes the finite-difference estimate a less-accurate approximation of the
derivative.

6.3.2 Algorithm for the Secant Method

As with the other open methods, an algorithm for the secant method is obtained simply by
modifying Fig. 6.4 so that two initial guesses are input and by using Eq. (6.7) to calculate
the root. In addition, the options suggested in Sec. 6.2.3 for the Newton-Raphson method
can also be applied to good advantage for the secant program.

6.3.3 Modified Secant Method

Rather than using two arbitrary values to estimate the derivative, an alternative approach
involves a fractional perturbation of the independent variable to estimate f/(x),

f(x +6x%) — f(x)
SXi

f/(Xi) =

158

OPEN METHODS

EXAMPLE 6.8

10

10"

1072

1073

True percent relative error

1074

uosydey-uoimaN

10—5 —

10-6 I Y Y I B [

Iterations

FIGURE 6.9
Comparison of the frue percent relafive errors ¢, for the methods to determine the roots of
flx) = e™*=x.

where § = a small perturbation fraction. This approximation can be substituted into Eq. (6.6)
to yield the following iterative equation:

8% (i)
T 6 1 0%) — f(x)

Xi 41 = Xi (68)

Modified Secant Method

Problem Statement. Use the modified secant method to estimate the root of f(x) =
e *— x. Use a value of 0.01 for § and start with xog = 1.0. Recall that the true root is
0.56714329. . ..

6.4 BRENT'S METHOD 159

Solution.
First iteration:

Xo =1 f(xo) = —0.63212

Xo + 6% = 1.01 f(Xo + 8%p) = —0.64578
0.01(—0.63212)

~ —0.64578 — (—0.63212)

Second iteration:

X =1 — 0537263 |&| = 5.3%

Xo = 0.537263 f(Xp) = 0.047083
Xo + 8Xg = 0.542635 f(Xo + 8%p) = 0.038579
0.005373(0.047083
X1 = 0.537263 — () = 0.56701 let| = 0.0236%

0.038579 — 0.047083
Third iteration:

Xg = 0.56701 f(Xp) = 0.000209
Xo + 8%o = 0.572680 f(Xo + %) = —0.00867
0.00567(0.000209
Xy = 0.56701 — () = 0.567143 le| = 2.365 x 107°%

—0.00867 — 0.000209

6.4

The choice of a proper value for § is not automatic. If § is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.8). If it is too big, the technique can become inefficient and even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

BRENT’S METHOD

Wouldn’t it be nice to have a hybrid approach that combined the reliability of bracketing
with the speed of the open methods? Brent’s root-location method is a clever algorithm that
does just that by applying a speedy open method wherever possible, but reverting to a
reliable bracketing method if necessary. The approach was developed by Richard Brent
(1973) based on an earlier algorithm of Theodorus Dekker (1969).

The bracketing technique is the trusty bisection method (Sec. 5.2) whereas two differ-
ent open methods are employed. The first is the secant method described in Sec. 6.3. As
explained next, the second is inverse quadratic interpolation.

6.4.1 Inverse Quadratic Interpolation

Inverse quadratic interpolation is similar in spirit to the secant method. As in Fig. 6.10a,
the secant method is based on computing a straight line that goes through two guesses. The
intersection of this straight line with the x axis represents the new root estimate. For this
reason, it is sometimes referred to as a linear interpolation method.

160

OPEN METHODS

f(x) f(x)

N N X

@) (b)

FIGURE 6.10

Comparison of (a) the secant method and [b) inverse quadratic interpolation. Note that the dark
parabola passing through the three points in [b) is called “inverse” because it is written in y
rather than in x.

Now suppose that we had three points. In that case, we could determine a quadratic
function of x that goes through the three points (Fig. 6.10b). Just as with the linear secant
method, the intersection of this parabola with the x axis would represent the new root
estimate. And as illustrated in Fig. 6.10b, using a curve rather than a straight line often
yields a better estimate.

Although this would seem to represent a great improvement, the approach has a
fundamental flaw: It is possible that the parabola might not intersect the x-axis! Such
would be the case when the resulting parabola had complex roots. This is illustrated by the
parabola, y = f(x), in Fig. 6.11.

The difficulty can be rectified by employing inverse quadratic interpolation. That is,
rather than using a parabola in x, we can fit the points with a parabola in y. This amounts to
reversing the axes and creating a “sideways” parabola (the curve, x = f(y), in Fig. 6.11).

If the three points are designated as (X _», Yi—2), (Xi—1, ¥i—1), and (X, ¥;), a quadratic
function of y that passes through the points can be generated as

vy - Y=Y DY —y)
I =, Tyt 2 Gy —

V=% =YD
=YDV — Yie1)

(6.9)

6.4 BRENT'S METHOD 161

EXAMPLE 6.9

FIGURE 6.11

Two parabolas fit o three points. The parabola written as a function of x, v = fix), has complex
roots and hence does not intersect the x axis. In contrast, if the variables are reversed, and the
parabola developed as x = f{y), the function does infersect the x axis.

As we will learn in Sec. 18.2, this form is called a Lagrange polynomial. The root, X; 1,
corresponds to y = 0, which when substituted into Eq. (6.9) yields

_ Yi-1Yi X o+ Yi-2Yi X1
Yi—2 = Yi—D)Vi2 — Vi) Yic1 = ¥Yi—2)ic1 — W)

Xit1

Yi-2Yi-1 -
O = Yi) i — Yie1)

(6.10)

As shown in Fig. 6.11, such a “sideways” parabola always intersects the x-axis.

Inverse Quadratic Interpolation

Problem Statement. Develop quadratic equations in both x and y for the data points
depicted in Fig. 6.11: (1, 2), (2, 1), and (4, 5). For the first, y = f (x), employ the quadratic
formula to illustrate that the roots are complex. For the latter, x = g(y), use inverse
quadratic interpolation (Eq. 6.10) to determine the root estimate.

162

OPEN METHODS

Solution. By reversing the x’s and y’s, Eq. (6.9) can be used to generate a quadratic in x as

(x—2)(x—4)2 (x—l)(x—4)1 X=DHXx—-2)
1-21-4 2-1@2-49 @G4-14 -2

f(x) =

or collecting terms
f(x) =x?—4x+5

This equation was used to generate the parabola, y = f(x), in Fig. 6.11. The quadratic
formula can be used to determine that the roots for this case are complex,

N O C)
B 2

=2=i

Equation (6.9) can be used to generate the quadratic in y as

y-bly-5, 6-29¢y-5, ¢-2y-b
2-D2-5 (1A-21-5 G-26G-D

a(y) =

or collecting terms
g(y) = 0.5x> —2.5x + 4
Finally, Eq. (6.10) can be used to determine the root as

N (- NP (G B T)
T e-ne-5 aA-20-5" " 6-26-1)

Before proceeding to Brent’s algorithm, we need to mention one more case where in-
verse quadratic interpolation does not work. If the three y values are not distinct (that is,
Vi_2 = Yi_1 0ryi_1 = Vi), an inverse quadratic function does not exist. So this is where the
secant method comes into play. If we arrive at a situation where the y values are not
distinct, we can always revert to the less efficient secant method to generate a root using
two of the points. If yi_, = y;_1, we use the secant method with x; _; and x;. If yi 1 = V;,
we use Xj_» and Xj_1.

6.4.2 Brent’s Method Algorithm

The general idea behind the Brent’s root finding method is whenever possible to use one of
the quick open methods. In the event that these generate an unacceptable result (i.e., a root
estimate that falls outside the bracket), the algorithm reverts to the more conservative
bisection method. Although bisection may be slower, it generates an estimate guaranteed to
fall within the bracket. This process is then repeated until the root is located to within an
acceptable tolerance. As might be expected, bisection typically dominates at first but as the
root is approached, the technique shifts to the faster open methods.

Figure 6.12 presents pseudocode for the algorithm based on a MATLAB M-file devel-
oped by Cleve Moler (2005). It represents a stripped down version of the fzero function

6.4 BRENT'S METHOD 163

Function fzerosimp(x1, xu)

eps = 2.22044604925031E-16

tol = 0.000001

a=xl: b= xu: fa= f(a): fb = f(b)
c=a:fc=fa:d=b—-c:re=4d

D0
IF fb = 0 EXIT
IF fa > fb THEN (If necessary, rearrange points)
a=c:fa="fc:d=b—-cre=4d
ENDIF

IF |fa| < |fb| THEN
c=b:b=aa=c
fc = fb: fb = fa: fa = fc
ENDIF
m= 0.5%*(a - b) (Termination test and possible exit)
tol = 2 * eps * max(|b|, 1)
IF |m| = tol Or fb = 0. THEN
EXIT
ENDIF
(Choose open methods or bisection)
IF |e| = tol And |fc| > |fb| THEN

s=fb/ fc

IF a = ¢ THEN (Secant method)
p=2%*m*s
g=1-5

ELSE (Inverse quadratic interpolation)
qg=fc/ fa: r=1b/ fa
p=s*@2*m*q*(@—-r)—(b—c)*(r—-1))
q=(q—1)*(r—1) *(s—1)

ENDIF

IFp> 0 THEN g = —q ELSE p = —p
IF2*p<3*m*q— |tol *q| AND p < |0.5 *e *q| THEN
e=d:d=p/ q
ELSE
d=m:e=m
ENDIF
ELSE (Bisection)
d=m:e=m
ENDIF
c=b: fc=1>b
IF |d| > tol THEN b = b + d Else b = b — Sgn(b — a) * tol
fb = f(b)
ENDDO
fzerosimp = b
END fzerosimp

FIGURE 6.12
Pseudocode for Brent's root finding algorithm based on a MATLAB mHile developed by Cleve
Moler (2005).

164

OPEN METHODS

6.5

which is the professional root location function employed in MATLAB. For that reason, we
call the simplified version: fzerosimp. Note that it requires another function, F, that
holds the equation for which the root is being evaluated.

The fzerosimp function is passed two initial guesses that must bracket the root.
After assigning values for machine epsilon and a tolerance, the three variables defining the
search interval (a, b, c)are initialized, and f is evaluated at the endpoints.

A main loop is then implemented. If necessary, the three points are rearranged to
satisfy the conditions required for the algorithm to work effectively. At this point, if the
stopping criteria are met, the loop is terminated. Otherwise, a decision structure chooses
among the three methods and checks whether the outcome is acceptable. A final section
then evaluates F at the new point and the loop is repeated. Once the stopping criteria are
met, the loop terminates and the final root estimate is returned.

Note that Sec. 7.7.2 presents an application of Brent’s method where we illustrate how
the MATLAB’s fzero function works. In addition, it is employed in Case Study 8.4 to
determine the friction factor for air flow through a tube.

MULTIPLE ROOTS

A multiple root corresponds to a point where a function is tangent to the x axis. For exam-
ple, a double root results from

fX)=X-3)(x—1H(x-1) (6.11)

or, multiplying terms, f(x) = x® — 5x2 + 7x — 3. The equation has a double root because
one value of x makes two terms in Eq. (6.11) equal to zero. Graphically, this corresponds to
the curve touching the x axis tangentially at the double root. Examine Fig. 6.13a at x = 1.
Notice that the function touches the axis but does not cross it at the root.

A tripleroot corresponds to the case where one x value makes three terms in an equa-
tion equal to zero, as in

fX)=xX=-3)x-DxX-DH(x—-1)

or, multiplying terms, f(x) = x* — 6x3 4+ 12x? — 10x + 3. Notice that the graphical de-
piction (Fig. 6.13b) again indicates that the function is tangent to the axis at the root, but
that for this case the axis is crossed. In general, odd multiple roots cross the axis, whereas
even ones do not. For example, the quadruple root in Fig. 6.13c does not cross the axis.

Multiple roots pose some difficulties for many of the numerical methods described in
Part Two:

1. The fact that the function does not change sign at even multiple roots precludes the use
of the reliable bracketing methods that were discussed in Chap. 5. Thus, of the methods
covered in this book, you are limited to the open methods that may diverge.

2. Another possible problem is related to the fact that not only f (x) but also f’(x) goes to
zero at the root. This poses problems for both the Newton-Raphson and secant
methods, which both contain the derivative (or its estimate) in the denominator of their
respective formulas. This could result in division by zero when the solution converges

6.5 MULTIPLE ROOTS 165

—4 =
(b)
()
4 = Quadruple
root

FIGURE 6.13

Examples of multiple roots that
are tangential fo the x axis.
Notice that the function does
not cross the axis on either side
of even multiple roots (a) and
(c), whereas it crosses the axis

for odd cases (b).

EXAMPLE 6.10

very close to the root. A simple way to circumvent these problems is based on the fact
that it can be demonstrated theoretically (Ralston and Rabinowitz, 1978) that f (x) will
always reach zero before f’(x). Therefore, if a zero check for f (X) is incorporated into
the computer program, the computation can be terminated before f/(x) reaches zero.

3. It can be demonstrated that the Newton-Raphson and secant methods are linearly, rather
than quadratically, convergent for multiple roots (Ralston and Rabinowitz, 1978).
Modifications have been proposed to alleviate this problem. Ralston and Rabinowitz
(1978) have indicated that a slight change in the formulation returns it to quadratic
convergence, as in

m f(x)
/(%)

Xit1 =X — (6.12)

where m is the multiplicity of the root (that is, m= 2 for a double root, m= 3 for a
triple root, etc.). Of course, this may be an unsatisfactory alternative because it hinges
on foreknowledge of the multiplicity of the root.

Another alternative, also suggested by Ralston and Rabinowitz (1978), is to define a
new function u(x), that is, the ratio of the function to its derivative, as in

f(x)
f/(x)

ux) = (6.13)

It can be shown that this function has roots at all the same locations as the original func-
tion. Therefore, Eq. (6.13) can be substituted into Eq. (6.6) to develop an alternative form
of the Newton-Raphson method:

Xit1 = Xi — ues) (6.14)
u'(xi)
Equation (6.13) can be differentiated to give
W) = L= OO 1700 (6.15)

[fo0F

Equations (6.13) and (6.15) can be substituted into Eq. (6.14) and the result simplified to

yield

3 f(xi) £/ (%)
[0 =) f7(x)

Xit1 =X (6.16)

Modified Newton-Raphson Method for Multiple Roots

Problem Statement. Use both the standard and modified Newton-Raphson methods to
evaluate the multiple root of Eq. (6.11), with an initial guess of xy = 0.

166

OPEN METHODS

Solution. The first derivative of Eq. (6.11) is f'(x) = 3x?> — 10x + 7, and therefore, the
standard Newton-Raphson method for this problem is [Eq. (6.6)]

X2 —5x2 + 7% — 3
3x2 — 10X + 7

which can be solved iteratively for

Xiy1 =X —

i Xi 1 (%)
0 0 100
1 0.4285714 57
2 0.6857143 31
3 0.8328654 17
4 0.9133290 8.7
5 0.9557833 4.4
6 0.9776551 2.2

As anticipated, the method is linearly convergent toward the true value of 1.0.
For the modified method, the second derivative is f”(x) = 6x — 10, and the iterative
relationship is [Eq. (6.16)]

(%3 = 5x7 + 7x — 3)(3x? — 10 + 7)
(32 — 10% +7) — (X — 57 + 7x — 3)(6x — 10)
which can be solved for

Xip1 = Xi —

i X; e1 (%)
0 0 100

] 1.105263 1

2 1.003082 0.31

3 1.000002 0.00024

Thus, the modified formula is quadratically convergent. We can also use both methods
to search for the single root at x = 3. Using an initial guess of xo = 4 gives the following
results:

i Standard £ (%) Modified £ (%)

0 4 33 4 33

] 3.4 13 2.636364 12

2 3.1 3.3 2.820225 6.0

3 3.008696 0.29 2961728 1.3

4 3.000075 0.0025 2.9984/9 0.051

5 3.000000 2x 1077 2.990008 7.7 x 107

Thus, both methods converge quickly, with the standard method being somewhat more
efficient.

6.6 SYSTEMS OF NONLINEAR EQUATIONS 167

6.6

The preceding example illustrates the trade-offs involved in opting for the modified
Newton-Raphson method. Although it is preferable for multiple roots, it is somewhat less
efficient and requires more computational effort than the standard method for simple roots.

It should be noted that a modified version of the secant method suited for multiple
roots can also be developed by substituting Eq. (6.13) into Eq. (6.7). The resulting formula
is (Ralston and Rabinowitz, 1978)

UuXi)(Xi—1 — Xi)

X =X 7 U — uta)

SYSTEMS OF NONLINEAR EQUATIONS

To this point, we have focused on the determination of the roots of a single equation. A
related problem is to locate the roots of a set of simultaneous equations,

fl(le X27 ceey Xn) = 0
fo(X1, X2, ..., %) =0

(6.17)
fan(X1, X2, ..., %n) =0

The solution of this system consists of a set of x values that simultaneously result in all the
equations equaling zero.

In Part Three, we will present methods for the case where the simultaneous equations
are linear—that is, they can be expressed in the general form

f(X) =axs +aX+ -+ +aX, —b=0 (6.18)

where the b and the a’s are constants. Algebraic and transcendental equations that do not fit
this format are called nonlinear equations. For example,

x? 4+ xy =10
and
y 4 3xy? =57

are two simultaneous nonlinear equations with two unknowns, x and y. They can be ex-
pressed in the form of Eq. (6.17) as

ux,y) =x*+xy—10=0 (6.19a)
v(X,y) =y +3xy? =57 =0 (6.19b)

Thus, the solution would be the values of x and y that make the functions u(x, y) and v(x, y)
equal to zero. Most approaches for determining such solutions are extensions of the open
methods for solving single equations. In this section, we will investigate two of these:
fixed-point iteration and Newton-Raphson.

168

OPEN METHODS

EXAMPLE 6.11

6.6.1 Fixed-Point Iteration

The fixed-point-iteration approach (Sec. 6.1) can be modified to solve two simultaneous,
nonlinear equations. This approach will be illustrated in the following example.

Fixed-Point lteration for a Nonlinear System

Problem Statement. Use fixed-point iteration to determine the roots of Eq. (6.19). Note
that a correct pair of roots is x=2 and y = 3. Initiate the computation with guesses of
x=15andy=3.5.

Solution. Equation (6.19a) can be solved for

10 — x?
Xii1 = (E6.11.1)
i
and Eqg. (6.19b) can be solved for
Yiy1 =57 —3xy? (E6.11.2)

Note that we will drop the subscripts for the remainder of the example.
On the basis of the initial guesses, Eq. (E6.11.1) can be used to determine a new value
of x:
10— (1.5)7?
35

This result and the initial value of y = 3.5 can be substituted into Eq. (E6.11.2) to deter-
mine a new value of y:

y = 57 — 3(2.21429)(3.5)2 = —24.37516

= 2.21429

Thus, the approach seems to be diverging. This behavior is even more pronounced on the
second iteration:

10 — (2.21429)2
X = ——p e = —0.20010

y = 57 — 3(—0.20910)(—24.37516)? = 429.709

Obviously, the approach is deteriorating.
Now we will repeat the computation but with the original equations set up in a differ-
ent format. For example, an alternative formulation of Eq. (6.19a) is

X =4/10 — xy

and of Eq. (6.19b) is

57—y
Y=y "3

Now the results are more satisfactory:

X =4/10 —1.5(3.5) = 2.17945

6.6 SYSTEMS OF NONLINEAR EQUATIONS 169

5735
Y=\ 3217945 8605

X = /10 — 2.17945(2.86051) = 1.94053

57 — 2.86051
_ 2L 290 504955
y 3(1.94053)

Thus, the approach is converging on the true values of x =2 and y = 3.

The previous example illustrates the most serious shortcoming of simple fixed-point
iteration—that is, convergence often depends on the manner in which the equations are for-
mulated. Additionally, even in those instances where convergence is possible, divergence
can occur if the initial guesses are insufficiently close to the true solution. Using reasoning
similar to that in Box 6.1, it can be demonstrated that sufficient conditions for convergence
for the two-equation case are

au au
—|+|=—| <1
ax ay

and
v n dv
aX ay

These criteria are so restrictive that fixed-point iteration has limited utility for solving non-
linear systems. However, as we will describe later in the book, it can be very useful for
solving linear systems.

<1

6.6.2 Newton-Raphson

Recall that the Newton-Raphson method was predicated on employing the derivative
(that is, the slope) of a function to estimate its intercept with the axis of the independent
variable—that is, the root (Fig. 6.5). This estimate was based on a first-order Taylor series
expansion (recall Box 6.2),

f(Xi+1) = FO6) + Xip1 — %) F/ (%) (6.20)

where ¥; is the initial guess at the root and x;, ; is the point at which the slope intercepts the

x axis. At this intercept, f(x11) by definition equals zero and Eqg. (6.20) can be rearranged

to yield

_feo)
/(%)

Xip1 = Xi (6.21)
which is the single-equation form of the Newton-Raphson method.

The multiequation form is derived in an identical fashion. However, a multivariable
Taylor series must be used to account for the fact that more than one independent variable

170

OPEN METHODS

EXAMPLE 6.12

contributes to the determination of the root. For the two-variable case, a first-order Taylor
series can be written [recall Eq. (4.26)] for each nonlinear equation as
au;
U1 = Ui + (Xi41 — Xi)& + (Yis1 —

-)991 6.22
Yi ay (6.229)

and

i+1=vi + (X —x-)%jt(- —-)% 6.22b
Vigl = Vi i+1 i Ix Yiv1 —Yi dy (6.22b)

Just as for the single-equation version, the root estimate corresponds to the values of xand y,
where u; 1 and v; 1 equal zero. For this situation, Eq. (6.22) can be rearranged to give

U au; AU au;
X ——Xi+1+ ay Yit1 = —Ui + X X + Vi 3_y (6.23a)
oV v Vv AV
X Xi+1+ —— 3y y|+1 v + X X +VYi— 3y (6.23b)

Because all values subscripted with i’s are known (they correspond to the latest guess or
approximation), the only unknowns are X1 and ;1. Thus, Eq. (6.23) is a set of two linear
equations with two unknowns [compare with Eq. (6.18)]. Consequently, algebraic manip-
ulations (for example, Cramer’s rule) can be employed to solve for

av; dU;
Ui W — U W
X4l =X — au; dvj au; av; (6.2423)
X y dy ax
ou; v
Uax _Yax
y|+l yl 8Ui 8Ui aui avi (624b)
ax ay ay 9x

The denominator of each of these equations is formally referred to as the determinant of the
Jacobian of the system.

Equation (6.24) is the two-equation version of the Newton-Raphson method. As in the
following example, it can be employed iteratively to home in on the roots of two simulta-
neous equations.

Newton-Raphson for a Nonlinear System

Problem Statement. Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (6.19). Note that a correct pair of roots is x = 2 and y = 3. Initiate the compu-
tation with guesses of x = 1.5 and y = 3.5.

Solution. First compute the partial derivatives and evaluate them at the initial guesses of
xandy:
dUg dUg

— =2X =215 +35=6.5 — =x=15
% +y=2(15 + oy

PROBLEMS 171

avo 2 2
— =3y =3(3.5)° =36.75
% y (3.5

9
aL; = 1+6xy=1+6(15)35) =325

Thus, the determinant of the Jacobian for the first iteration is
6.5(32.5) — 1.5(36.75) = 156.125

The values of the functions can be evaluated at the initial guesses as
Up = (1.5)2 + 1.5(3.5) — 10 = —2.5
vo = 3.5+ 3(1.5)(3.5)> — 57 = 1.625

These values can be substituted into Eq. (6.24) to give

—2.5(32.5) — 1.625(1.5)

—15— — 2.03603
X 156.125
1.625(6.5) — (—2.5)(36.75
y=35~- (63 — ¢)):2.84388
156.125

Thus, the results are converging to the true values of x = 2 and y = 3. The computation can
be repeated until an acceptable accuracy is obtained.

Just as with fixed-point iteration, the Newton-Raphson approach will often diverge if
the initial guesses are not sufficiently close to the true roots. Whereas graphical methods
could be employed to derive good guesses for the single-equation case, no such simple pro-
cedure is available for the multiequation version. Although there are some advanced ap-
proaches for obtaining acceptable first estimates, often the initial guesses must be obtained
on the basis of trial and error and knowledge of the physical system being modeled.

The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. Because the most efficient way to do this involves matrix algebra and the
solution of simultaneous linear equations, we will defer discussion of the general approach

to Part Three.

PROBLEMS

6.1 Use simple fixed-point iteration to locate the root of
f(x) = 2sin(v/X) — X

Use an initial guess of xg = 0.5 and iterate until ¢ < 0.001%. Ver-
ify that the process is linearly convergent as described in Box 6.1.
6.2 Determine the highest real root of

f(x) =2x3 —11.7x* + 17.7x — 5

(a) Graphically.

(b) Fixed-point iteration method (three iterations, xo = 3). Note:
Make certain that you develop a solution that converges on
the root.

(c) Newton-Raphson method (three iterations, X = 3).

(d) Secant method (three iterations, x_; = 3, Xop = 4).

(e) Modified secant method (three iterations, Xo = 3, § = 0.01).
Compute the approximate percent relative errors for your
solutions.

6.3 Use (@) fixed-point iteration and (b) the Newton-Raphson
method to determine a root of f(x) = —x? +1.8x + 2.5 using
Xo = 5. Perform the computation until &5 is less than es = 0.05%.
Also perform an error check of your final answer.

6.4 Determine the real roots of f(x) = —1 4 5.5x — 4x? + 0.5x°:
(a) graphically and (b) using the Newton-Raphson method to
within es = 0.01%.

6.5 Employ the Newton-Raphson method to determine areal root for
f(x) = —2 4 6x — 4x? + 0.5x3 using initial guesses of (a) 4.2 and

172 OPEN METHODS

(b) 4.43. Discuss and use graphical and analytical methods to explain
any peculiarities in your results.

6.6 Determine the lowest real root of f(x)=-12—21x +
18x% — 2.4x3: (a) graphically and (b) using the secant method to a
value of e corresponding to three significant figures.

6.7 Locate the first positive root of

f(x) =sinx +cos(1+x%) —1

where X is in radians. Use four iterations of the secant method with
initial guesses of (a) xi-1 = 1.0 and x; = 3.0; (b) xi-1 = 1.5 and
xi = 2.5, and (c) xi-1 = 1.5 and x = 2.25 to locate the root.
(d) Use the graphical method to explain your results.

6.8 Determine the real root of x35 = 80, with the modified secant
method to within e = 0.1% using an initial guess of Xo = 3.5 and
5§ =0.01.

6.9 Determine the highest real root of f(x) = 0.95x® — 5.9x% +
10.9x — 6:

(a) Graphically.

(b) Using the Newton-Raphson method (three iterations,
X = 3.5).

(c) Using the secant method (three iterations, xj_; = 2.5 and
Xi = 3.5).

(d) Using the modified secant method (three iterations, x; = 3.5,
§ =0.01).

6.10 Determine the lowest positive root of f(x) = 8sin(x)e™* — 1:
(a) Graphically.

(b) Using the Newton-Raphson method (three iterations,
Xi = 0.3).

(c) Using the secant method (five iterations, x_3 = 0.5 and
X = 0.4).

(d) Using the modified secant method (three iterations, x; = 0.3,
§ =0.01).

6.11 Use the Newton-Raphson method to find the root of
fx)=e %4 -—x) -2

Employ initial guesses of (a) 2, (b) 6, and (c) 8. Explain your
results.
6.12 Given

f(x) = —2x® — 1.5x* + 10x + 2

Use a root location technique to determine the maximum of this
function. Perform iterations until the approximate relative error falls
below 5%. If you use a bracketing method, use initial guesses of
x; = 0 and x, = 1. If you use the Newton-Raphson or the modified
secant method, use an initial guess of x; = 1. If you use the secant
method, use initial guesses of x;_; = 0 and x; = 1. Assuming that
convergence is not an issue, choose the technique that is best suited
to this problem. Justify your choice.

6.13 You must determine the root of the following easily differen-
tiable function,

eO.5X — 5 _5x

Pick the best numerical technique, justify your choice and then use
that technique to determine the root. Note that it is known that for
positive initial guesses, all techniques except fixed-point iteration
will eventually converge. Perform iterations until the approximate
relative error falls below 2%. If you use a bracketing method,
use initial guesses of X, = 0 and x, = 2. If you use the Newton-
Raphson or the modified secant method, use an initial guess
of x; = 0.7. If you use the secant method, use initial guesses of
Xi_1 =0and x; = 2.

6.14 The function x® — 2x? — 4x + 8 has a double root at x = 2.
Use (a) the standard Newton-Raphson [Eq. (6.6)], (b) the modified
Newton-Raphson [Eq. (6.12)], and (c¢) the modified Newton-
Raphson [Eq. (6.16)] to solve for the root at x = 2. Compare
and discuss the rate of convergence using an initial guess of
Xg = 1.2.

6.15 Determine the roots of the following simultaneous nonlinear
equations using (a) fixed-point iteration and (b) the Newton-
Raphson method:

y=-—x?4x+0.75
y 4 5xy = x?

Employ initial guesses of x = y = 1.2 and discuss the results.
6.16 Determine the roots of the simultaneous nonlinear equations

x=4*+(y-4?=5

X% +y? =16
Use a graphical approach to obtain your initial guesses. Determine
refined estimates with the two-equation Newton-Raphson method

described in Sec. 6.6.2.
6.17 Repeat Prob. 6.16 except determine the positive root of

y=x*+1
y = 2C0S X

6.18 A mass balance for a pollutant in a well-mixed lake can be
written as

Vg—f =W - Qc—kV.c

Given the parameter values V = 1 x 10°m?, Q =1 x 10° mé/yr,
W =1 x 108 g/yr, and k = 0.25 m®%/g®5/yr, use the modified
secant method to solve for the steady-state concentration. Employ
an initial guess of ¢ = 4 g/m® and § = 0.5. Perform three iterations
and determine the percent relative error after the third iteration.
6.19 For Prob. 6.18, the root can be located with fixed-point
iteration as

W — 2
= (%)
kv
oras
c_ Wokvye

Q

PROBLEMS

173

Only one will converge for initial guesses of 2 < ¢ < 6. Select the
correct one and demonstrate why it will always work.

6.20 Develop a user-friendly program for the Newton-Raphson
method based on Fig. 6.4 and Sec. 6.2.3. Test it by duplicating the
computation from Example 6.3.

6.21 Develop a user-friendly program for the secant method based
on Fig. 6.4 and Sec. 6.3.2. Test it by duplicating the computation
from Example 6.6.

6.22 Develop a user-friendly program for the modified secant
method based on Fig. 6.4 and Sec. 6.3.2. Test it by duplicating the
computation from Example 6.8.

6.23 Develop a user-friendly program for Brent’s root location
method based on Fig. 6.12. Test it by solving Prob. 6.6.

6.24 Develop a user-friendly program for the two-equation Newton-
Raphson method based on Sec. 6.6.2. Test it by solving Example 6.11.
6.25 Use the program you developed in Prob. 6.24 to solve Probs.
6.15 and 6.16 to within a tolerance of e = 0.01%.

6.26 The “divide and average” method, an old-time method for
approximating the square root of any positive number a, can be for-
mulated as

= X +a/x
2

Prove that this is equivalent to the Newton-Raphson algorithm.
6.27 (a) Apply the Newton-Raphson method to the function
f(x) = tanh(x? — 9) to evaluate its known real root at x = 3. Use
an initial guess of xo = 3.2 and take a minimum of four iterations.
(b) Did the method exhibit convergence onto its real root? Sketch
the plot with the results for each iteration shown.
6.28 The polynomial f(x) = 0.0074x* — 0.284x3 + 3.355x> —
12.183x + 5 has a real root between 15 and 20. Apply the Newton-
Raphson method to this function using an initial guess of
Xo = 16.15. Explain your results.
6.29 Use the secant method on the circle function (x + 1)% +
(y — 2)% = 16 to find a positive real root. Set your initial guess to
X; = 3 and X;_; = 0.5. Approach the solution from the first and
fourth quadrants. When solving for f (x) in the fourth quadrant, be
sure to take the negative value of the square root. Why does your
solution diverge?
6.30 You are designing a spherical tank (Fig. P6.30) to hold water
for a small village in a developing country. The volume of liquid it
can hold can be computed as

v = an2BR =N
3

where V = volume (m?), h = depth of water in tank (m), and R =
the tank radius (m).

Figure P6.30

If R =3 m, what depth must the tank be filled to so that it holds
30 m®? Use three iterations of the Newton-Raphson method to
determine your answer. Determine the approximate relative error
after each iteration. Note that an initial guess of R will always
converge.

6.31 The Manning equation can be written for a rectangular open
channel as

VS(BH)5/
n(B + 2H)2/3

where Q = flow [m%/s], S= slope [m/m], H = depth [m], and n =
the Manning roughness coefficient. Develop a fixed-point iteration
scheme to solve this equation for H given Q =5, S= 0.0002,
B = 20, and n = 0.03. Prove that your scheme converges for all
initial guesses greater than or equal to zero.

Q:

CHAPTER

E ' :
S A!.
-

7.1

174

Roots of Polynomials

In this chapter, we will discuss methods to find the roots of polynomial equations of the
general form

fo(X) = ag + arx + apx® 4 - - - + apx" (7.1)

where n = the order of the polynomial and the a’s = constant coefficients. Although the
coefficients can be complex numbers, we will limit our discussion to cases where they are
real. For such cases, the roots can be real and/or complex.

The roots of such polynomials follow these rules:

1. For an nth-order equation, there are n real or complex roots. It should be noted that
these roots will not necessarily be distinct.

If nis odd, there is at least one real root.

3. If complex roots exist, they exist in conjugate pairs (that is, A + wiand & — wi), where

i =+-1L

Before describing the techniques for locating the roots of polynomials, we will provide
some background. The first section offers some motivation for studying the techniques; the
second deals with some fundamental computer manipulations involving polynomials.

N

POLYNOMIALS IN ENGINEERING AND SCIENCE

Polynomials have many applications in engineering and science. For example, they are used
extensively in curve-fitting. However, we believe that one of their most interesting and pow-
erful applications is in characterizing dynamic systems and, in particular, linear systems.
Examples include mechanical devices, structures, and electrical circuits. We will be explor-
ing specific examples throughout the remainder of this text. In particular, they will be the
focus of several of the engineering applications throughout the remainder of this text.

For the time being, we will keep the discussion simple and general by focusing on a
simple second-order system defined by the following linear ordinary differential equation
(or ODE):

d? d
Y a4y = Ft) (72)

7.1 POLYNOMIALS IN ENGINEERING AND SCIENCE 175

where y and t are the dependent and independent variables, respectively, the a’s are con-
stant coefficients, and F(t) is the forcing function.

In addition, it should be noted that Eq. (7.2) can be alternatively expressed as a pair of
first-order ODEs by defining a new variable z,

_dy

T

(7.3)

Equation (7.3) can be substituted along with its derivative into Eq. (7.2) to remove the
second-derivative term. This reduces the problem to solving

d_z _ Ft) —a1z —apy

T a (7.4)
dy
dt =2 (7.5)

In a similar fashion, an nth-order linear ODE can always be expressed as a system of n
first-order ODEs.

Now let’s look at the solution. The forcing function represents the effect of the exter-
nal world on the system. The homogeneous or general solution of the equation deals with
the case when the forcing function is set to zero,

2

d d
y + al_y +ayy =0 (7.6)

g TG

Thus, as the name implies, the general solution should tell us something very fundamental
about the system being simulated—that is, how the system responds in the absence of ex-
ternal stimuli.

Now, the general solution to all unforced linear systems is of the form y = e". If this
function is differentiated and substituted into Eq. (7.6), the result is

ar?e" +are"+ae" =0
or canceling the exponential terms,
ar’+air+a,=0 (7.7

Notice that the result is a polynomial called the characteristic equation. The roots of
this polynomial are the values of r that satisfy Eq. (7.7). These r’s are referred to as the sys-
tem’s characteristic values, or eigenvalues.

So, here is the connection between roots of polynomials and engineering and science.
The eigenvalue tells us something fundamental about the system we are modeling, and
finding the eigenvalues involves finding the roots of polynomials. And, whereas finding
the root of a second-order equation is easy with the quadratic formula, finding roots of
higher-order systems (and hence, higher-order polynomials) is arduous analytically.
Thus, the best general approach requires numerical methods of the type described in this
chapter.

Before proceeding to these methods, let us take our analysis a bit farther by investi-
gating what specific values of the eigenvalues might imply about the behavior of physical

176

ROOTS OF POLYNOMIALS

systems. First, let us evaluate the roots of Eq. (7.7) with the quadratic formula,

o —aE /a2 — dapag

I dg

Thus, we get two roots. If the discriminant (a? — 4a,ay) is positive, the roots are real and
the general solution can be represented as

y = ciet 4 et (7.8)

where the ¢’s = constants that can be determined from the initial conditions. This is called
the overdamped case.

If the discriminant is zero, a single real root results, and the general solution can be
formulated as

y = (C1 + cot)e™ (7.9)
This is called the critically damped case.
If the discriminant is negative, the roots will be complex conjugate numbers,

1 =A£pui
r

and the general solution can be formulated as

y = Cle(Hm)t + Cze(’“’“)t

FIGURE 7.1
The general solution for linear ODEs can be composed of (a) exponential and (b) sinusoidal
components. The combination of the two shapes results in the damped sinusoid shown in (c).

4
4

4
(4

t (b)

N/
\/\/\/\
VA

(©)

7.2 COMPUTING WITH POLYNOMIALS 177

7.2

The physical behavior of this solution can be elucidated by using Euler’s formula
eMt = cos ut + i sin ut

to reformulate the general solution as (see Boyce and DiPrima, 1992, for details of the
derivation)

y = cie™ cos ut + coe’t sin put (7.10)

This is called the underdamped case.

Equations (7.8), (7.9), and (7.10) express the possible ways that linear systems re-
spond dynamically. The exponential terms mean that the solutions are capable of decaying
(negative real part) or growing (positive real part) exponentially with time (Fig. 7.1a). The
sinusoidal terms (imaginary part) mean that the solutions can oscillate (Fig. 7.1b). If the
eigenvalue has both real and imaginary parts, the exponential and sinusoidal shapes are
combined (Fig. 7.1c). Because such knowledge is a key element in understanding, design-
ing, and controlling the behavior of a physical system, characteristic polynomials are very
important in engineering and many branches of science. We will explore the dynamics of
several engineering systems in the applications covered in Chap. 8.

COMPUTING WITH POLYNOMIALS

Before describing root-location methods, we will discuss some fundamental computer op-
erations involving polynomials. These have utility in their own right as well as providing
support for root finding.

7.2.1 Polynomial Evaluation and Differentiation

Although it is the most common format, Eq. (7.1) provides a poor means for determining
the value of a polynomial for a particular value of x. For example, evaluating a third-order
polynomial as

f3(x) = agx®+ ax?+ a;X + ap (7.11)

involves six multiplications and three additions. In general, for an nth-order polynomial,
this approach requires n(n + 1)/2 multiplications and n additions.
In contrast, a nested format,

f3(x) = ((@3x +az)x +ay)x +ap (7.12)

involves three multiplications and three additions. For an nth-order polynomial, this ap-
proach requires n multiplications and n additions. Because the nested format minimizes the
number of operations, it also tends to minimize round-off errors. Note that, depending on
your preference, the order of nesting can be reversed:

f3(X) = ap + x(ar + x(az + xagz)) (7.13)
Succinct pseudocode to implement the nested form can be written simply as
DOFOR j = n, 0, —1

p=p*xtalj)
END DO

178

ROOTS OF POLYNOMIALS

where p holds the value of the polynomial (defined by its coefficients, the a’s) evaluated
at x.

There are cases (such as in the Newton-Raphson method) where you might want to
evaluate both the function and its derivative. This evaluation can also be neatly included by
adding a single line to the preceding pseudocode,

DOFOR j = n, 0, —1
df = df = x+p

p=p*xt+alj)
END DO

where df holds the first derivative of the polynomial.

7.2.2 Polynomial Deflation

Suppose that you determine a single root of an nth-order polynomial. If you repeat your
root location procedure, you might find the same root. Therefore, it would be nice to re-
move the found root before proceeding. This removal process is referred to as polynomial
deflation.

Before we show how this is done, some orientation might be useful. Polynomials are
typically represented in the format of Eq. (7.1). For example, a fifth-order polynomial
could be written as

f5(x) = —120 — 46X 4+ 79x? — 3x® — 7x* + x° (7.14)

Although this is a familiar format, it is not necessarily the best expression to understand the
polynomial’s mathematical behavior. For example, this fifth-order polynomial might be
expressed alternatively as

fsX)=X+DX —HX —5X+3)X —2) (7.15)

This is called the factored form of the polynomial. If multiplication is completed and
like terms collected, Eq. (7.14) would be obtained. However, the format of Eq. (7.15) has
the advantage that it clearly indicates the function’s roots. Thus, it is apparent that x = —1,
4,5, —3, and 2 are all roots because each causes an individual term in Eq. (7.15) to become
Zero.

Now, suppose that we divide this fifth-order polynomial by any of its factors, for ex-
ample, x 4 3. For this case the result would be a fourth-order polynomial

f40) = (X + 1)(X — 4)(X — 5)(X — 2) = —40 — 2x + 27x% — 10x° + x* (7.16)

with a remainder of zero.

In the distant past, you probably learned to divide polynomials using the approach
called synthetic division. Several computer algorithms (based on both synthetic division,
as well as other methods) are available for performing the operation. One simple scheme
is provided by the following pseudocode, which divides an nth-order polynomial by a

7.2 COMPUTING WITH POLYNOMIALS 179

EXAMPLE 7.1

monomial factor x — t:

r=aln)

a(n) =0

DOFOR i = n—1, 0, —1
s = al(i)
a(i) =r
r=s+rx*t

END DO

If the monomial is a root of the polynomial, the remainder r will be zero, and the coeffi-
cients of the quotient stored in a, at the end of the loop.
Polynomial Deflation
Problem Statement. Divide the second-order polynomial,
f(X) = (X —4)(x +6) = x* +2x — 24
by the factor x — 4.

Solution. Using the approach outlined in the above pseudocode, the parameters are
n=2a =—24,a; =2,a,=1,and t = 4. These can be used to compute

r=a=1
a,=0
The loop is then iterated fromi=2 - 1=11t00. Fori=1,
S=a; =2
ag=r=1
r=s+rt=24+14) =6
Fori=0,
S=ag=—-24
a=r==6

r=-24+6(4)=0
Thus, the result is as expected—the quotient is ag + ai;x = 6 + x, with a remainder of zero.

Itis also possible to divide by polynomials of higher order. As we will see later in this
chapter, the most common task involves dividing by a second-order polynomial or
parabola. The subroutine in Fig. 7.2 addresses the more general problem of dividing an nth-
order polynomial a by an mth-order polynomial d. The result is an (n — m)th-order poly-
nomial g, with an (m — 1)th-order polynomial as the remainder.

Because each calculated root is known only approximately, it should be noted that
deflation is sensitive to round-off error. In some cases, they can grow to the point that the
results can become meaningless.

Some general strategies can be applied to minimize this problem. For example, round-
off error is affected by the order in which the terms are evaluated. Forward deflation refers

180

ROOTS OF POLYNOMIALS

7.3

SUB poldiv(a, n, d, m, q, r)

DOFOR j = 0, n
r(j) = alj)
q(j) =0

END DO

DOFOR k = n—m, 0, —1
q(k+1) = r(m+k) / d(m)
DOFOR j = m+k=1, k, —1

r(j) = r(j)—q(k+1) = b(j—k)
END DO

END DO

DOFOR j = m, n
r(j) =0

END DO

n = n—m

DOFOR 7 = 0, n
a(i) = q(i+1)

END DO

END SUB

FIGURE 7.2
Algorithm to divide a polynomial (defined by its coefficients a) by a lower-order polynomial d.

to the case where new polynomial coefficients are in order of descending powers of x (that
is, from the highest-order to the zero-order term). For this case, it is preferable to divide by
the roots of smallest absolute value first. Conversely, for backward deflation (that is, from
the zero-order to the highest-order term), it is preferable to divide by the roots of largest
absolute value first.

Another way to reduce round-off errors is to consider each successive root estimate
obtained during deflation as a good first guess. These can then be used as a starting guess,
and the root determined again with the original nondeflated polynomial. This is referred to
as root polishing.

Finally, a problem arises when two deflated roots are inaccurate enough that they both
converge on the same undeflated root. In that case, you might be erroneously led to believe
that the polynomial has a multiple root (recall Sec. 6.5). One way to detect this problem is
to compare each polished root with those that were located previously. Press et al. (1992)
discuss this problem in more detail.

CONVENTIONAL METHODS

Now that we have covered some background material on polynomials, we can begin to
describe methods to locate their roots. The obvious first step would be to investigate the
viability of the bracketing and open approaches described in Chaps. 5 and 6.

The efficacy of these approaches depends on whether the problem being solved involves
complex roots. If only real roots exist, any of the previously described methods could have
utility. However, the problem of finding good initial guesses complicates both the bracketing
and the open methods, whereas the open methods could be susceptible to divergence.

7.4 MULLER'S METHOD 181

7.4

When complex roots are possible, the bracketing methods cannot be used because of
the obvious problem that the criterion for defining a bracket (that is, sign change) does not
translate to complex guesses.

Of the open methods, the conventional Newton-Raphson method would provide a
viable approach. In particular, concise code including deflation can be developed. If a
language that accommodates complex variables (like Fortran) is used, such an algorithm
will locate both real and complex roots. However, as might be expected, it would be sus-
ceptible to convergence problems. For this reason, special methods have been developed to
find the real and complex roots of polynomials. We describe two—the Miiller and Bairstow
methods—in the following sections. As you will see, both are related to the more conven-
tional open approaches described in Chap. 6.

MULLER’S METHOD

Recall that the secant method obtains a root estimate by projecting a straight line to the x
axis through two function values (Fig. 7.3a). Miiller’s method takes a similar approach, but
projects a parabola through three points (Fig. 7.3b).

The method consists of deriving the coefficients of the parabola that goes through the
three points. These coefficients can then be substituted into the quadratic formula to obtain
the point where the parabola intercepts the x axis—that is, the root estimate. The approach
is facilitated by writing the parabolic equation in a convenient form,

fo(x) = a(Xx — X2)> + b(X — xp) +¢ (7.17)

We want this parabola to intersect the three points [Xo, f(Xo0)], [X1, f(X1)], and [xg, f(x2)]. The
coefficients of Eq. (7.17) can be evaluated by substituting each of the three points to give

f(X0) = a(Xo — X2)* + b(Xo — X2) + ¢ (7.18)
f(x1) = a(Xy — X2)* + b(xy — X2) + ¢ (7.19)
f(X2) = a(X2 — X2)? + b(Xz — X2) +C (7.20)
FIGURE 7.3
A comparison of two related f(x) Straight f(x)
approaches for locating roofs: line ' |
(a) the secant method and ! | !
(b) Miiller's method. Root ! : | Parabola
estimate : : :
' | b
I I I |
I I I |
I I I |
I I I |
: ! L
X My X X X X
Root Root Root
estimate

(@ (b)

182

ROOTS OF POLYNOMIALS

Note that we have dropped the subscript “2” from the function for conciseness. Because we
have three equations, we can solve for the three unknown coefficients, a, b, and c. Because
two of the terms in Eq. (7.20) are zero, it can be immediately solved for ¢ = f(xy). Thus, the
coefficient c is merely equal to the function value evaluated at the third guess, x,. This
result can then be substituted into Egs. (7.18) and (7.19) to yield two equations with two
unknowns:

f(Xo) — f(X2) = a(Xg — X2)? + b(Xo — X2) (7.21)
f(x1) — f(x2) = a(X1 — X2)? + b(Xg — X2) (7.22)

Algebraic manipulation can then be used to solve for the remaining coefficients, aand b.
One way to do this involves defining a number of differences,

ho = X1 — Xo hy =x2— X1
f — f f — f
50 = (X1) — f(Xo0) 5 = (X2) — f(X1) (7.23)
X1 — Xo X2 —X1
These can be substituted into Egs. (7.21) and (7.22) to give
(hg +hpb — (hg + hl)za = hodp + 181
hy b— h% a= h181
which can be solved for a and b. The results can be summarized as
81 — 8o
a= 7.24
hy 4+ ho (729
b =ah; + 8; (7.25)
c = f(xp) (7.26)

To find the root, we apply the quadratic formula to Eq. (7.17). However, because of
potential round-off error, rather than using the conventional form, we use the alternative
formulation [Eq. (3.13)] to yield

-2C
b £+ vb% — 4ac

or isolating the unknown x3 on the left side of the equal sign,

—2c
X3 = X2 + b & VT dac (7.27b)
Note that the use of the quadratic formula means that both real and complex roots can be
located. This is a major benefit of the method.
In addition, Eq. (7.27a) provides a neat means to determine the approximate error. Be-
cause the left side represents the difference between the present (x3) and the previous (X»)
root estimate, the error can be calculated as

X3 — Xp = (7.27a)

X3 = X21900%

8a =
X3

7.4 MULLER'S METHOD 183

EXAMPLE 7.2

Now, a problem with Eq. (7.27a) is that it yields two roots, corresponding to the + term
in the denominator. In Mller’s method, the sign is chosen to agree with the sign of b. This
choice will result in the largest denominator, and hence, will give the root estimate that is
closest to x.

Once x5 is determined, the process is repeated. This brings up the issue of which point
is discarded. Two general strategies are typically used:

1. If only real roots are being located, we choose the two original points that are nearest
the new root estimate, xs.

2. If both real and complex roots are being evaluated, a sequential approach is employed.
That is, just like the secant method, x;, x,, and x3 take the place of Xq, X1, and x,.

Muller’s Method

Problem Statement. Use Miiller’s method with guesses of Xo, X1, and x» = 4.5, 5.5,
and 5, respectively, to determine a root of the equation

f(x) =x3 —13x — 12
Note that the roots of this equation are —3, —1, and 4.
Solution. First, we evaluate the function at the guesses
f(4.5) = 20.625 f(5.5) =82.875 f(5) = 48

which can be used to calculate

hg=55-45=1 hy =5-55=-0.5
82.875 — 20.625 48 — 82.875
jo=——7——— =6225 8 = ————— =609.75
55—-45 5-55
These values in turn can be substituted into Eqgs. (7.24) through (7.26) to compute
69.75 — 62.25
=——=15 b = 15(—0.5) + 69.75 = 62.25 c=48
0511 =03+

The square root of the discriminant can be evaluated as

V/62.25%2 — 4(15)48 = 31.54461

Then, because [62.25 + 31.54451| > |62.25 — 31.54451], a positive sign is employed in
the denominator of Eq. (7.27b), and the new root estimate can be determined as
—2(48
=3t o ;1.?34451 = 3.976487
and develop the error estimate
—1.023513
3.976487

Because the error is large, new guesses are assigned; X is replaced by xi, X is replaced by
X2, and Xy is replaced by xs. Therefore, for the new iteration,

Xo =5.5 X1 =5 X2 = 3.976487

100% = 25.74%

Ea =

184 ROOTS OF POLYNOMIALS

and the calculation is repeated. The results, tabulated below, show that the method con-
verges rapidly on the root, x, = 4:

i £q (%)

0

1 3.976487 25.74

2 4.00105 0.6139

3 0.0262

4 0.0000119

Pseudocode to implement Mdller’s method for real roots is presented in Fig. 7.4. No-
tice that this routine is set up to take a single initial nonzero guess that is then perturbed to

FIGURE 7.4

Pseudocode for Miller's method.

Xo
Do

SUB Muller(xr, h, eps, maxit)

X = Xp
= Xr + h*x.
= X, — h*x,

iter = iter + 1

hg = X7 — Xpo

h] = X2 — X;

dp = (f(x;) — f(xg)) / hy

d; = (f(X) — f(x1)) |
a={(d — do) / (hy + hy)
b =a*h; + d

c = f(xp)

rad = SORT(b*b — 4*a*c)
If |b+rad| > |b—rad| THEN
den = b + rad
ELSE
den = b — rad
END IF
dx, = —2%c / den
Xr = Xo + dXp
PRINT iter, X,
IF (|dx-| < eps*x, OR iter >= maxit) EXIT

Xo = Xi

X1 = X2

Xo = Xp
END DO

END Miiller

7.5 BAIRSTOW’S METHOD 185

develop the other two guesses. Of course, the algorithm can also be programmed to ac-
commodate three guesses. For languages like Fortran, the code will find complex roots if
the proper variables are declared as complex.

BAIRSTOW'’S METHOD

Bairstow’s method is an iterative approach related loosely to both the Miller and Newton-
Raphson methods. Before launching into a mathematical description of the technique,
recall the factored form of the polynomial,

fsX)=X+DX —HX —5X+3)X—2) (7.28)

If we divided by a factor that is not a root (for example, x + 6), the quotient would be a
fourth-order polynomial. However, for this case, a remainder would result.

On the basis of the above, we can elaborate on an algorithm for determining a root of
a polynomial: (1) guess a value for the root x = t, (2) divide the polynomial by the factor
x —t, and (3) determine whether there is a remainder. If not, the guess was perfect and the
root is equal to t. If there is a remainder, the guess can be systematically adjusted and the
procedure repeated until the remainder disappears and a root is located. After this is ac-
complished, the entire procedure can be repeated for the quotient to locate another root.

Bairstow’s method is generally based on this approach. Consequently, it hinges on the
mathematical process of dividing a polynomial by a factor. Recall from our discussion of
polynomial deflation (Sec. 7.2.2) that synthetic division involves dividing a polynomial by
a factor x — t. For example, the general polynomial [Eqg. (7.1)]

fa(X) = ag + arX 4+ apx2 + - - - + apx" (7.29)
can be divided by the factor x — t to yield a second polynomial that is one order lower,
fa_1(X) = by + box + bsx? 4 -+ - 4+ byx" 1 (7.30)

with a remainder R = hg, where the coefficients can be calculated by the recurrence rela-
tionship

bnzan
bi = aj + bj 1t fori=n-1to0

Note that if t were a root of the original polynomial, the remainder by would equal zero.
To permit the evaluation of complex roots, Bairstow’s method divides the polynomial
by a quadratic factor x> — rx — s. If this is done to Eq. (7.29), the result is a new polyno-
mial
fa_2(X) = by +bax 4 - - +by_1x" 73 + by x" 2
with a remainder
R=by(x—r)+bg (7.31)

As with normal synthetic division, a simple recurrence relationship can be used to perform
the division by the quadratic factor:

186

ROOTS OF POLYNOMIALS

bn_l == an_l + rbn (732b)
bi = a; + rbjy1 +sbii2 fori=n-2to0 (7.32¢)

The quadratic factor is introduced to allow the determination of complex roots. This
relates to the fact that, if the coefficients of the original polynomial are real, the complex
roots occur in conjugate pairs. If x> — rx — s is an exact divisor of the polynomial, complex
roots can be determined by the quadratic formula. Thus, the method reduces to determin-
ing the values of r and s that make the quadratic factor an exact divisor. In other words, we
seek the values that make the remainder term equal to zero.

Inspection of Eq. (7.31) leads us to conclude that for the remainder to be zero, by and
b; must be zero. Because it is unlikely that our initial guesses at the values of r and s will
lead to this result, we must determine a systematic way to modify our guesses so that by and
b, approach zero. To do this, Bairstow’s method uses a strategy similar to the Newton-
Raphson approach. Because both by and by are functions of both r and s, they can be
expanded using a Taylor series, as in [recall Eq. (4.26)]

ob; oby
bi(r + Ar,s+As)=Dhb — Ar + — AS
1(r + + As) 1+ or + P
abg obg
bo(r + Ar,s + As) = by + ar Ar + TS AS (7.33)

where the values on the right-hand side are all evaluated at r and s. Notice that second- and
higher-order terms have been neglected. This represents an implicit assumption that —r and
—s are small enough that the higher-order terms are negligible. Another way of expressing
this assumption is to say that the initial guesses are adequately close to the values of r and
s at the roots.

The changes, Ar and As, needed to improve our guesses can be estimated by setting
Eq. (7.33) equal to zero to give

b, abq
— Ar+ —As=-Db 7.34
ar 2T s ! (7.34)
abg abg
— Ar+ — AS=-D 7.35
ar 2T s 0 (7.35)

If the partial derivatives of the b’s can be determined, these are a system of two equations
that can be solved simultaneously for the two unknowns, Ar and As. Bairstow showed that
the partial derivatives can be obtained by a synthetic division of the b’s in a fashion simi-
lar to the way in which the b’s themselves were derived:

Ch = by (7.36a)
Ch1 =bp_1 +rcCy (7.36h)
Ci = bj +rcit1 +SCit2 fori=n—-2to1l (7.36¢)

where dbgy/dr = c1, dbg/3s = dby/dr = c,, and dby/ds = c3. Thus, the partial derivatives
are obtained by synthetic division of the b’s. Then the partial derivatives can be substituted
into Egs. (7.34) and (7.35) along with the b’s to give

CoAr + C3AS = —b,

C1Ar 4+ CoAs = —by

7.5 BAIRSTOW’S METHOD 187

EXAMPLE 7.3

These equations can be solved for Ar and As, which can in turn be employed to improve the
initial guesses of r and s. At each step, an approximate error in r and s can be estimated, as in

Ar
and
As
|€a,s| = ? 100% (738)

When both of these error estimates fall below a prespecified stopping criterion s, the val-
ues of the roots can be determined by

X_ri«/r2+4s
=—F

At this point, three possibilities exist:

(7.39)

1. The quotient is a third-order polynomial or greater. For this case, Bairstow’s method
would be applied to the quotient to evaluate new values for r and s. The previous values
of r and s can serve as the starting guesses for this application.

2. The quotient is a quadratic. For this case, the remaining two roots could be evaluated
directly with Eq. (7.39).

3. The quotient is a first-order polynomial. For this case, the remaining single root can be
evaluated simply as

x=—= (7.40)

Bairstow’s Method

Problem Statement. Employ Bairstow’s method to determine the roots of the polynomial
f5(x) = x° — 3.5x* 4+ 2.75x° 4 2.125x? — 3.875x + 1.25

Use initial guesses of r = s = —1 and iterate to a level of &; = 1%.

Solution. Equations (7.32) and (7.36) can be applied to compute

bs=1 by=-45 Db3=625 b, =0375 b =-105
bo = 11.375

=1 ¢, =-55 c3 = 10.75 c, = —4.875 ¢, = —16.375
Thus, the simultaneous equations to solve for Ar and As are

—4.875Ar + 10.75As = 10.5
—16.375Ar — 4.875As = —11.375

which can be solved for Ar = 0.3558 and As = 1.1381. Therefore, our original guesses
can be corrected to

r = —1+0.3558 = —0.6442
s =-1+1.1381 =0.1381

188

ROOTS OF POLYNOMIALS

and the approximate errors can be evaluated by Egs. (7.37) and (7.38),

0.3558 1.1381
—0.6442 P % = 0
—0.6442 0.1381‘100/0 824.1%

Next, the computation is repeated using the revised values for r and s. Applying Egs. (7.32)
and (7.36) yields

bs =1 by = —4.1442 bz = 5.5578 b, = —2.0276 b; = —1.8013
bo = 2.1304

cs=1 cy = —4.7884 c3 = 8.7806 C, = —8.3454 cy = 4.7874
Therefore, we must solve
—8.3454Ar + 8.7806As = 1.8013
4.7874Ar — 8.3454As = —2.1304
for Ar = 0.1331 and As = 0.3316, which can be used to correct the root estimates as
r = —0.6442 + 0.1331 = —0.5111 lear| = 26.0%
s = 0.1381 + 0.3316 = 0.4697 leas| = 70.6%

The computation can be continued, with the result that after four iterations the method
converges on values of r = —0.5 (|ear| = 0.063%)and s = 0.5 (|eas| = 0.040%). Equa-
tion (7.39) can then be employed to evaluate the roots as

05+ (=052 +40.
g = 05 E VI 25) 405 _ 55 10

100% = 55.23% leas| =

lear| =

At this point, the quotient is the cubic equation
f(x) =x3 —4x? +5.25x — 2.5

Bairstow’s method can be applied to this polynomial using the results of the previous step,
r=—0.5 and s = 0.5, as starting guesses. Five iterations yield estimates of r =2 and
s = —1.249, which can be used to compute

2 _
x = 2EV? +24(1249 _ 1 4 0.490i

At this point, the quotient is a first-order polynomial that can be directly evaluated by
Eq. (7.40) to determine the fifth root: 2.

Note that the heart of Bairstow’s method is the evaluation of the b’s and c’s via
Egs. (7.32) and (7.36). One of the primary strengths of the method is the concise way in
which these recurrence relationships can be programmed.

Figure 7.5 lists pseudocode to implement Bairstow’s method. The heart of the algo-
rithm consists of the loop to evaluate the b’s and ¢’s. Also notice that the code to solve the
simultaneous equations checks to prevent division by zero. If this is the case, the values of
r and s are perturbed slightly and the procedure is begun again. In addition, the algorithm
places a user-defined upper limit on the number of iterations (MAXIT) and should be
designed to avoid division by zero while calculating the error estimates. Finally, the
algorithm requires initial guesses for r and s (rr and ss in the code). If no prior knowledge
of the roots exist, they can be set to zero in the calling program.

7.5 BAIRSTOW’S METHOD

189

(a) Bairstow Algorithm

SUB Bairstow (a,nn,es,rr,ss,maxit,re,im,ier)
DIMENSION b(nn), c(nn)
r=rr; s =5ss;n=nn

jer = 0; eal = 1; ea? = 1

Do
IF n< 3 0R iter = maxit EXIT
iter =0
Do
iter = iter + 1
b(n) = a(n)
bn— 1) =aln — 1)+ r * b(n)
c(n) = b(n)

cn—1) =bn—1)+r *cln)
pD0i=n-2,0 -1
b(i) =a(i)+r *b(i+1)+s *b(i+2)
c(i) =b(i)+r *c(i+1)+s *c(i+2)
END DO
det = c(2) * c(2)—c(3) * c(1)
IF det # 0 THEN
dr = (=b(1) * c(2) +b(0) * c(3))/det
ds = (=b(0) * c(2) +b(1) * c(1))/det
r=r+dr
S =s5+ds
IF r#0 THEN eal = ABS(dr/r) * 100
IF s#0 THEN ea? = ABS(ds/s) * 100
ELSE
r=r+1
s=s5+1
iter =0
END IF
IF eal = es AND ea? = es OR iter = maxit EXIT
END DO
CALL Quadroot(r,s,rl,il,r2,i2)

re(n) = rl
imn) =11
re(n — 1) = r2
imn — 1) =12
n=n-=2
D0 i=20,n
a(i) =b(i+2)

END DO

END DO

FIGURE 7.5

[a) Algorithm for implementing Bairstow's method, along with (b} an algorithm fo defermine the roots of a quadratic.

IF iter < maxit THEN
IF n =2 THEN
r= —a(l)la(2)
s = —a(0)/a(2)
CALL Quadroot(r,s,rl,il,r2,i?)

re(n) = ril
im(n) = 11
re(n — 1) =r2
imn — 1) =12
ELSE
re(n) = —a(0)/a(l)
im(n) =0
END IF
ELSE
jer = 1
END IF

END Bairstow

(b) Roots of Quadratic Algorithm

SUB Quadroot(r,s,rl,il,r2,i2)
disc=r"2+4%*s
IF disc > 0 THEN

rl = (r + SQRT(disc))/2
r?2 = (r — SQRT(disc))/?
il1=20
i2 =20

ELSE
rl =r/2
r2 =ri
i1 = SQRT(ABS(disc))/2
i2=—il

END IF

END QuadRoot

190

ROOTS OF POLYNOMIALS

7.6

7.7

OTHER METHODS

Other methods are available to locate the roots of polynomials. The Jenkins-Traub method
(Jenkins and Traub, 1970) is commonly used in software libraries. It is fairly complicated,
and a good starting point to understanding it is found in Ralston and Rabinowitz (1978).

Laguerre’s method, which approximates both real and complex roots and has cubic
convergence, is among the best approaches. A complete discussion can be found in House-
holder (1970). In addition, Press et al. (1992) present a nice algorithm to implement the
method.

ROOT LOCATION WITH SOFTWARE PACKAGES

Software packages have great capabilities for locating roots. In this section, we will give
you a taste of some of the more useful ones.

7.7.1 Excel

A spreadsheet like Excel can be used to locate a root by trial and error. For example, if we
want to find a root of

f(x) = x — cosx

first, you can enter a value for x in a cell. Then set up another cell for f(x) that would obtain
its value for x from the first cell. You can then vary the x cell until the f(x) cell approaches
zero. This process can be further enhanced by using Excel’s plotting capabilities to obtain
a good initial guess (Fig. 7.6).

Although Excel does facilitate a trial-and-error approach, it also has two standard tools
that can be employed for root location: Goal Seek and Solver. Both these tools can be em-
ployed to systematically adjust the initial guesses. Goal Seek is expressly used to drive an
equation to a value (in our case, zero) by varying a single parameter.

FIGURE 7.6

A spreadsheet sef up to
determine the root of

fix) = x — cos x by trial and
error. The plot is used to obtain
a good initial guess.

Bl1 v (» fe | =A11-COS{A11)

P A [Le | ¢ [b [E F G H
. 1 |values for plot: _ -

2 x f(x) _ L
| & 0 -1 7 J S
| 4 | 0.5 -0.37758 -
57| 1 0.459698 1+
| 6 | 1.5 1.429263 -

7 2 2.416147 0 L e
o _ q ¢ 0.5 1 1.5 2
9 |values for trial-and-error:

10 |x fix i
11| 0.739085| -3.26-11] il
|12

7.7 ROOT LOCATION WITH SOFTWARE PACKAGES 191

EXAMPLE 7.4

Using Excel’s Goal Seek Tool to Locate a Single Root

Problem Statement. Employ Goal Seek to determine the root of the transcendental function

f(x) = x —cosx

Solution. As in Fig. 7.6, the key to solving a single equation with Excel is creating a cell to
hold the value of the function in question and then making the value dependent on another cell.
Once this is done, the selection Goal Seek is chosen from the What-If Analysis button on your
Data ribbon. At this point a dialogue box will be displayed, asking you to set a cell to a value by
changing another cell. For the example, suppose that as in Fig. 7.6 your guess is entered in cell
Al11 and your function result in cell B11. The Goal Seek dialogue box would be filled out as

Goal Seek

Set cell: B11l

To walue: |III |

By changing cell: |$.ﬁ.$11

ﬁ (o] 4][Cancel J

When the OK button is selected, a message box displays the results,

Goal Seek Status

Goal Seeking with Cell B11

Skep
found a solukion,

p
0 ause

-53.1516E-11

Target walue:
Current value:

The cells on the spreadsheet would also be modified to the new values (as shown in Fig. 7.6).

EXAMPLE 7.5

The Solver tool is more sophisticated than Goal Seek in that (1) it can vary several
cells simultaneously and (2) along with driving a target cell to a value, it can minimize and
maximize its value. The next example illustrates how it can be used to solve a system of
nonlinear equations.

Using Excel’s Solver for a Nonlinear System

Problem Statement. Recall that in Sec. 6.6 we obtained the solution of the following set
of simultaneous equations,

ux,y) =x>+xy—10=0
v(X,y) =y +3xy? =57 =0

B8]
[-
=T
=
[
S5
(=]
"]

192

ROOTS OF POLYNOMIALS

Note that a correct pair of roots is x = 2 and y = 3. Use Solver to determine the roots using
initial guesses of x =1 andy = 3.5.

Solution. As shown below, two cells (B1 and B2) can be created to hold the guesses for x and
y. The function values themselves, u(x, y) and v(x, y) can then be entered into two other cells
(B3 and B4). As can be seen, the initial guesses result in function values that are far from zero.

B ~ (2 £ | =B372+Ba%2

| 1 |x 1
| 2 |y | 3.5
| 3 |ulx,y) -5.5
| 4 |v(xy) | -16.75
| 5

B |[Sum ofsquaresl 310.8125!

"

Next, another cell can be created that contains a single value reflecting how close both
functions are to zero. One way to do this is to sum the squares of the function values. This
is done and the result entered in cell B6. If both functions are at zero, this function should
also be at zero. Further, using the squared functions avoids the possibility that both func-
tions could have the same nonzero value, but with opposite signs. For this case, the target
cell (B6) would be zero, but the roots would be incorrect.

Once the spreadsheet is created, the selection Solver is chosen from the Data ribbon.*
At this point a dialogue box will be displayed, querying you for pertinent information. The
pertinent cells of the Solver dialogue box would be filled out as

Solver Parameters | |

Set Target Cell: Siolve
EpalTo: OmMae OMn @vsleok (0| Close

By Changing Cells:

| $B41:4B42 GuUess

Subject ko the Conskraints: pkions

X

&dd

Reset Al

Help

INote that you may have to install Solver by choosing Office, Excel Options, Add-Ins. Select Excel Add-Ins from
the Manage drop-down box at the bottom of the Excel options menu and click Go. Then, check the Solver box.
The Solver then should be installed and a button to access it should appear on your Data ribbon.

7.7 ROOT LOCATION WITH SOFTWARE PACKAGES 193

When the OK button is selected, a dialogue box will open with a report on the success of
the operation. For the present case, the Solver obtains the correct solution:

P A jaeay] ¢ [o |
e x 2.00003

[2]y | 2.999984.

L3 juixy) 0.000176

LA vixy) | 0.000202

5

%Sum of squaresl ?.19E—OE_|

It should be noted that the Solver can fail. Its success depends on (1) the condition of
the system of equations and/or (2) the quality of the initial guesses. Thus, the successful
outcome of the previous example is not guaranteed. Despite this, we have found Solver
useful enough to make it a feasible option for quickly obtaining roots in a wide range of en-
gineering applications.

7.7.2 MATLAB

As summarized in Table 7.1, MATLAB software is capable of locating roots of single alge-
braic and transcendental equations. It is superb at manipulating and locating the roots of
polynomials.

The Fzero function is designed to locate one root of a single function. A simplified
representation of its syntax is

fzero(f,Xp,options)

where F is the function you are analyzing, Xg is the initial guess, and options are the
optimization parameters (these are changed using the function optimset). If options
are omitted, default values are employed. Note that one or two guesses can be employed.
If two guesses are employed, they are assumed to bracket a root. The following example
illustrates how fzero can be used.

TABLE 7.1 Common functions in MATLAB related fo root
location and polynomial manipulation.

Function Description

fzero Root of single function.

roots Find polynomial roots.

poly Construct polynomial with specified roofs.
polyval Evaluate polynomial.

polyvalm Evaluate polynomial with matrix argument.
residue Partialfraction expansion [residues).
polyder Differentiate polynomial.

conv Multiply polynomials.

deconv Divide polynomials.

o
[-
<z
=
[
("™
(—]
("]

194

ROOTS OF POLYNOMIALS

EXAMPLE 7.6

Using MATLAB for Root Location
Problem Statement. Use the MATLAB function fzero to find the roots of
fx)=x¥—-1

within the interval x; = 0 and x, = 4. Obviously two roots occur at —1 and 1. Recall that in
Example 5.6, we used the false-position method with initial guesses of 0 and 1.3 to deter-
mine the positive root.

Solution. Using the same initial conditions as in Example 5.6, we can use MATLAB to
determine the positive root as in

>> x0=[0 1.3];
>> x=fzero(@(x) x"10-1,x0)

X =
1

In a similar fashion, we can use initial guesses of —1.3 and 0 to determine the negative
root,

>> x0=[-1.3 0];
>> x=fzero(@(x) x"10-1,x0)

X =
-1

We can also employ a single guess. An interesting case would be to use an initial guess
of 0,

>> x0=0;
>> x=fzero(@(x) x"10-1,x0)

X =
-1

Thus, for this guess, the underlying algorithm happens to home in on the negative root.
The use of optimset can be illustrated by using it to display the actual iterations as
the solution progresses:

>> x0=0;
>> option=optimset("DISP","ITER");
>> x=fzero(@(x) x"10-1,x0,option)

Func—count X f(x) Procedure
1 0 -1 initial
2 —-0.0282843 -1 search
3 0.0282843 -1 search
4 -0.04 -1 search
21 0.64 —-0.988471 search
22 —0.905097 —0.631065 search

EXAMPLE 7.7

7.7 ROOT LOCATION WITH SOFTWARE PACKAGES 195
23 0.905097 —0.631065 search
24 -1.28 10.8059 search
Looking for a zero in the interval [-1.28], 0.9051]
25 0.784528 —-0.911674 interpolation
26 —0.247736 —0.999999 bisection
27 —0.763868 —0.932363 bisection
28 —-1.02193 0.242305 bisection
29 —0.968701 —-0.27239 interpolation
30 —0.996873 —0.0308299 interpolation
31 —0.999702 —0.00297526 interpolation
32 -1 5.53132e-006 interpolation
33 -1 —7.41965e—-009 interpolation
34 -1 —1.88738e-014 interpolation
35 -1 0 interpolation

Zero found in the interval: [-1.28, 0.9051].

X =
-1

These results illustrate the strategy used by fzero when it is provided with a single
guess. First, it searches in the vicinity of the guess until it detects a sign change. Then it
uses a combination of bisection and interpolation to home in on the root. The interpolation
involves both the secant method and inverse quadratic interpolation (recall Sec. 7.4). It
should be noted that the fzero algorithm has more to it than this basic description might
imply. You can consult Press et al. (1992) for additional details.

Using MATLAB to Manipulate and Determine the Roots of Polynomials

Problem Statement. Explore how MATLAB can be employed to manipulate and deter-

mine the roots of polynomials. Use the following equation from Example 7.3,
fs(x) = x® — 3.5x* 4 2.75x3 4 2.125x? — 3.875x + 1.25 (E7.7.1)

which has three real roots: 0.5, —1.0, and 2, and one pair of complex roots: 1 + 0.5i.

Solution. Polynomials are entered into MATLAB by storing the coefficients as a vector.
For example, at the MATLAB prompt (>>) typing and entering the follow line stores the
coefficients in the vector a,

>> a=[1 -3.5 2.75 2.125 -3.875 1.25];

We can then proceed to manipulate the polynomial. For example, we can evaluate it at
x = 1 by typing

>> polyval(a,l)
with the result 1(1)° — 3.5(1)* + 2.75(1)° + 2.125(1)> — 3.875(1) + 1.25 = —0.25,

ans =
—0.2500

[BR]
e
=T
=
o
b
o
(]

196

ROOTS OF POLYNOMIALS

We can evaluate the derivative f'(x) = 5x* — 14x® + 8.25x? + 4.25x — 3.875 by

>> polyder(a)
ans =
5.0000 —14.0000 8.2500 4.2500 —-3.8750

Next, let us create a quadratic polynomial that has roots corresponding to two of the origi-
nal roots of Eq. (E7.7.1): 0.5 and —1. This quadratic is (x — 0.5)(x + 1) = x* + 0.5x — 0.5
and can be entered into MATLAB as the vector b,

>> b=[1 0.5 —-0.5];
We can divide this polynomial into the original polynomial by
>> [d,e]=deconv(a,b)
with the result being a quotient (a third-order polynomial d) and a remainder (e),

d =
1.0000 —4._.0000 5.2500 —2.5000
e =
0 0 0 0 0 0

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

>> roots(d)

with the expected result that the remaining roots of the original polynomial (E7.7.1) are
found,

ans =
2.0000
1.0000 + 0.5000i
1.0000 — 0.5000i

We can now multiply d by b to come up with the original polynomial,

>> conv(d,b)
ans =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

Finally, we can determine all the roots of the original polynomial by

>> r=roots(a)
r =
—1.0000
2.0000
1.0000 + 0.5000i
1.0000 — 0.5000i
0.5000

7.7 ROOT LOCATION WITH SOFTWARE PACKAGES 197

7.7.3 Mathcad

Mathcad has a numeric mode function called root that can be used to solve an equation of a
single variable. The method requires that you supply a function f(x) and either an initial guess
or a bracket. When a single guess value is used, root uses the Secant and Miller methods. In
the case where two guesses that bracket a root are supplied, it uses a combination of the
Ridder method (a variation of false position) and Brent’s method. It iterates until the magni-
tude of f(x) at the proposed root is less than the predefined value of TOL. The Mathcad im-
plementation has similar advantages and disadvantages as conventional root location meth-
ods such as issues concerning the quality of the initial guess and the rate of convergence.

Mathcad can find all the real or complex roots of polynomials with polyroots. This nu-
meric or symbolic mode function is based on the Laguerre method. This function does not
require initial guesses, and all the roots are returned at the same time.

Mathcad contains a numeric mode function called Find that can be used to solve up to 50
simultaneous nonlinear algebraic equations. The Find function chooses an appropriate
method from a group of available methods, depending on whether the problem is linear or non-
linear, and other attributes. Acceptable values for the solution may be unconstrained or con-
strained to fall within specified limits. If Find fails to locate a solution that satisfies the equa-
tions and constraints, it returns the error message “did not find solution.” However, Mathcad
also contains a similar function called Minerr. This function gives solution results that mini-
mize the errors in the constraints even when exact solutions cannot be found. Thus, the prob-
lem of solving for the roots of nonlinear equations is closely related to both optimization and
nonlinear least-squares. These areas and Minerr are covered in detail in Parts Four and Five.

Figure 7.7 shows a typical Mathcad worksheet. The menus at the top provide quick
access to common arithmetic operators and functions, various two- and three-dimensional

FIGURE 7.7
Mathcad screen to find the root
of a single equation.

M Mathcad
M) File Edt View Insert Format Tools Symbolics Window Help

SOLVING AN EQUATION WITH A SINGLE UNKNOWN

Enter a function f(x):

f(x) =x— cos(x) 10

Enter a given value for x;

x.=1
Solve for the root:
f(2) 0 "4
goln ;= root(f(x),.x)
soln = 0.739085
—-10
-10 0 10

198

ROOTS OF POLYNOMIALS

plot types, and the environment to create subprograms. Equations, text, data, or graphs can
be placed anywhere on the screen. You can use a variety of fonts, colors, and styles to con-
struct worksheets with almost any design and format that pleases you. Consult the sum-
mary of the Mathcad User’s manual in App. C or the full manual available from MathSoft.
Note that in all our Mathcad examples, we have tried to fit the entire Mathcad session onto
a single screen. You should realize that the graph would have to be placed below the com-
mands to work properly.

Let’s start with an example that solves for the root of f(x) = x — cos x. The first step is
to enter the function. This is done by typing f(x): which is automatically converted to f(x):=
by Mathcad. The := is called the definition symbol. Next an initial guess is input in a simi-
lar manner using the definition symbol. Now, soln is defined as root(f(x), x), which invokes
the secant method with a starting value of 1.0. Iteration is continued until f(x) evaluated at
the proposed root is less than TOL. The value of TOL is set from the Math/Options pull
down menu. Finally the value of soln is displayed using a normal equal sign (=). The num-
ber of significant figures is set from the Format/Number pull down menu. The text labels
and equation definitions can be placed anywhere on the screen in a number of different
fonts, styles, sizes, and colors. The graph can be placed anywhere on the worksheet by click-
ing to the desired location. This places a red cross hair at that location. Then use the
Insert/Graph/X-Y Plot pull down menu to place an empty plot on the worksheet with place-
holders for the expressions to be graphed and for the ranges of the x and y axes. Simply type
f(z) in the placeholder on the y axis and —10 and 10 for the z-axis range. Mathcad does all
the rest to produce the graph shown in Fig. 7.7. Once the graph has been created you can use
the Format/Graph/X-Y Plot pull down menu to vary the type of graph; change the color,
type, and weight of the trace of the function; and add titles, labels and other features.

Figure 7.8 shows how Mathcad can be used to find the roots of a polynomial using the
polyroots function. First, p(x) and v are input using the := definition symbol. Note that v
is a vector that contains the coefficients of the polynomial starting with zero-order term and
ending in this case with the third-order term. Next, r is defined (using :=) as polyroots(v),
which invokes the Laguerre method. The roots contained in r are displayed as r" using a
normal equal sign (=). Next, a plot is constructed in a manner similar to the above, except
that now two range variables, x and j, are used to define the range of the x axis and the lo-
cation of the roots. The range variable for x is constructed by typing x and then “:”” (which
appears as :=) and then —4, and then “,” and then —3.99, and then “;” (which is trans-
formed into ..by Mathcad), and finally 4. This creates a vector of values of x ranging from
—4 to 4 with an increment of 0.01 for the x axis with corresponding values for p(x) on the
y axis. The j range variable is used to create three values for r and p(r) that are plotted as
individual small circles. Note that again, in our effort to fit the entire Mathcad session onto
a single screen, we have placed the graph above the commands. You should realize that the
graph would have to be below the commands to work properly.

The last example shows the solution of a system of nonlinear equations using a
Mathcad Solve Block (Fig. 7.9). The process begins with using the definition symbol to
create initial guesses for x and y. The word Given then alerts Mathcad that what follows is
a system of equations. Then comes the equations and inequalities (not used here). Note that
for this application Mathcad requires the use of a symbolic equal sign typed as [Ctrl]= or
< and > to separate the left and right sides of an equation. Now, the variable vec is defined
as Find (x,y) and the value of vec is shown using an equal sign.

7.7 ROOT LOCATION WITH SOFTWARE PACKAGES

199

FIGURE 7.8
Mathcad screen to solve for
roofs of polynomial.

File Edit Yiew Insert Format Tools Symbolics Window Help

FINDING THE ROOT OF A POLYNOMIAL

Input I ial:
nput a polynomial 40

px) =% —10x+2

Input vector of coefficients,
beginning with the constant term: p(x) ‘/\
2 — 0

- |—10 p(r;)
V s 0 o o

1
) —40
Determine the roots: =5 0
r = polyroots(v) XTI

T =(-3.257897 0.20081 3.057087)

Create a plot:
x:=-4,-3.99.4
j=01.2

FIGURE 7.9
Mathcad screen fo solve a
system of nonlinear equations.

File Edit View Insert Format Tools Symbolics Window Help

SOLVING A NONLINEAR SYSTEM OF EQUATIONS

Enter guesses for the n unknowns:

x=1
y:=3.5
Given

Enter the n equations:

X+ xy-10=0 [Note: Use the symbolic equal sign [Ctrl=
y+3xy—57=0 for equations within the Solve Block]

Solve the system:
vec = Find(x, y)

Solution:

-3

200 ROOTS OF POLYNOMIALS

PROBLEMS

7.1 Divide a polynomial f(x) = x* — 5x3 + 5x2 4 5x — 6 by the
monomial factor x — 2. Is x = 2 a root?

7.2 Divide a polynomial f(x) = x5 — 6x* + x3 — 7x> — 7x + 12 by
the monomial factor x — 2.

7.3 Use Milller’s method to determine the positive real root of

@ f)=x3+x>—4x—4

(o) f(x) =x3—05x% +4x -2

7.4 Use Miller’s method or MATLAB to determine the real and
complex roots of

@ fR)=x—x2+2x—2

() fx)=2x*+6x°+8

© fx)=x*—2x3+6x2—2x+5

7.5 Use Bairstow’s method to determine the roots of

(@ f(x)=—2+6.2x—4x*> + 0.7x°

(b) f(x) =9.34 — 21.97x + 16.3x? — 3.704x°

© fX)=x*—2x34+6x°—2x+5

7.6 Develop a program to implement Miller’s method. Test it by
duplicating Example 7.2.

7.7 Use the program developed in Prob. 7.6 to determine the real
roots of Prob. 7.4a. Construct a graph (by hand or with a software
package) to develop suitable starting guesses.

7.8 Develop a program to implement Bairstow’s method. Test it by
duplicating Example 7.3.

7.9 Use the program developed in Prob. 7.8 to determine the roots
of the equations in Prob. 7.5.

7.10 Determine the real root of x> = 80 with Excel, MATLAB or
Mathcad.

7.11 The velocity of a falling parachutist is given by

v= 90 (1 g-e/m)

C

where g = 9.8 m/s%. For a parachutist with a drag coefficient ¢ =
14 kg/s, compute the mass m so that the velocity is v = 35 m/s at
t = 85s. Use Excel, MATLAB or Mathcad to determine m.

7.12 Determine the roots of the simultaneous nonlinear equations

y=-—x>+x+0.75
y +5xy = x?
Employ initial guesses of x =y = 1.2 and use the Solver tool from
Excel or a software package of your choice.
7.13 Determine the roots of the simultaneous nonlinear equations
(X =42+ (y—4°=5
X% +y? =16
Use a graphical approach to obtain your initial guesses. Determine

refined estimates with the Solver tool from Excel or a software
package of your choice.

7.14 Perform the identical MATLAB operations as those in
Example 7.7 or use a software package of your choice to find all the
roots of the polynomial

fX)=X—=-6)(X+2)(x —1)(X +4)(x —8)

Note that the poly function can be used to convert the roots to a
polynomial.

7.15 Use MATLAB or Mathcad to determine the roots for the
equations in Prob. 7.5.

7.16 Atwo-dimensional circular cylinder is placed in a high-speed
uniform flow. Vortices shed from the cylinder at a constant fre-
quency, and pressure sensors on the rear surface of the cylinder de-
tect this frequency by calculating how often the pressure oscillates.
Given three data points, use Miller’s method to find the time where
the pressure was zero.

Time | 0.60 0.62 0.64
Pressure | 20 50 60

7.17 When trying to find the acidity of a solution of magnesium
hydroxide in hydrochloric acid, we obtain the following equation

A(x) =x343.5x% — 40

where x is the hydronium ion concentration. Find the hydronium
ion concentration for a saturated solution (acidity equals zero)
using two different methods in MATLAB (for example, graphically
and the roots function).

7.18 Consider the following system with three unknowns a, u,
and v:

u? — 202 =a?

ut+v=2
a?—2a-u=0

Solve for the real values of the unknowns using: (a) the Excel Solver
and (b) a symbolic manipulator software package.

7.19 In control systems analysis, transfer functions are developed
that mathematically relate the dynamics of a system’s input to its
output. A transfer function for a robotic positioning system is
given by

C(s) s®+12.55% 450.55 4 66
N(s) ~ s4+419s3 + 12252 + 296s + 192

G(s) =

where G(s) = system gain, C(s) = system output, N(s) = system
input, and s = Laplace transform complex frequency. Use a numerical

PROBLEMS

201

technique to find the roots of the numerator and denominator and
factor these into the form

(s+ay)(s+ax)(s+az)
(s 4+ b1)(s 4 b2)(s + b3)(s + by)

where a; and b; = the roots of the numerator and denominator,
respectively.

7.20 Develop an M-file function for bisection in a similar fashion
to Fig. 5.10. Test the function by duplicating the computations from
Examples 5.3 and 5.4.

7.21 Develop an M-file function for the false-position method.
The structure of your function should be similar to the bisection
algorithm outlined in Fig. 5.10. Test the program by duplicating
Example 5.5.

G(s) =

7.22 Develop an M-file function for the Newton-Raphson method
based on Fig. 6.4 and Sec. 6.2.3. Along with the initial guess, pass
the function and its derivative as arguments. Test it by duplicating
the computation from Example 6.3.

7.23 Develop an M-file function for the secant method based on
Fig. 6.4 and Sec. 6.3.2. Along with the two initial guesses, pass the
function as an argument. Test it by duplicating the computation
from Example 6.6.

7.24 Develop an M-file function for the modified secant method
based on Fig. 6.4 and Sec. 6.3.2. Along with the initial guess and
the perturbation fraction, pass the function as an argument. Test it
by duplicating the computation from Example 6.8.

202

8.1

Case Studies:
Roots of Equations

The purpose of this chapter is to use the numerical procedures discussed in Chaps. 5, 6, and
7 to solve actual engineering problems. Numerical techniques are important for practical
applications because engineers frequently encounter problems that cannot be approached
using analytical techniques. For example, simple mathematical models that can be solved
analytically may not be applicable when real problems are involved. Thus, more compli-
cated models must be employed. For these cases, it is appropriate to implement a numeri-
cal solution on a computer. In other situations, engineering design problems may require
solutions for implicit variables in complicated equations.

The following case studies are typical of those that are routinely encountered during
upper-class courses and graduate studies. Furthermore, they are representative of problems
you will address professionally. The problems are drawn from the four major disciplines of
engineering: chemical, civil, electrical, and mechanical. These applications also serve to
illustrate the trade-offs among the various numerical techniques.

The first application, taken from chemical engineering, provides an excellent example
of how root-location methods allow you to use realistic formulas in engineering practice.
In addition, it also demonstrates how the efficiency of the Newton-Raphson technique is
used to advantage when a large number of root-location computations is required.

The following engineering design problems are taken from civil, electrical, and mechan-
ical engineering. Section 8.2 uses bisection to determine changes in rainwater chemistry due
to increases in atmospheric carbon dioxide. Section 8.3 shows how the roots of transcendental
equations can be used in the design of an electrical circuit. Sections 8.2 and 8.3 also illustrate
how graphical methods provide insight into the root-location process. Finally, Sec. 8.4 uses a
variety of numerical methods to compute the friction factor for fluid flow in a pipe.

IDEAL AND NONIDEAL GAS LAWS
(CHEMICAL/BIO ENGINEERING)

Background. The ideal gas law is given by
pV =nRT 8.1)

where p is the absolute pressure, V is the volume, n is the number of moles, R is the uni-
versal gas constant, and T is the absolute temperature. Although this equation is widely

8.1 IDEAL AND NONIDEAL GAS LAWS 203

used by engineers and scientists, it is accurate over only a limited range of pressure and
temperature. Furthermore, Eq. (8.1) is more appropriate for some gases than for others.
An alternative equation of state for gases is given by

(p + %)(v —b)=RT (8.2)

known as the van der Waals equation, where v = V/n is the molal volume and a and b are
empirical constants that depend on the particular gas.

A chemical engineering design project requires that you accurately estimate the molal
volume (v) of both carbon dioxide and oxygen for a number of different temperature and
pressure combinations so that appropriate containment vessels can be selected. It is also of
interest to examine how well each gas conforms to the ideal gas law by comparing the
molal volume as calculated by Eqgs. (8.1) and (8.2). The following data are provided:

R = 0.082054 L atm/(mol K)

a = 3.592 ..

b — 0.04267 } carbon dioxide
a =1.360 oxvaen

b= 0.03183 | &Y

The design pressures of interest are 1, 10, and 100 atm for temperature combinations of
300, 500, and 700 K.

Solution. Molal volumes for both gases are calculated using the ideal gas law, with n = 1.
For example, if p = 1 atmand T = 300 K,
V. RT L atm 300 K

v=—=— =0.082054 ——— = 24.6162 L/mol
n p mol K 1 atm

These calculations are repeated for all temperature and pressure combinations and pre-
sented in Table 8.1.

TABLE 8.1 Computations of molal volume.

Molal Volume Molal Volume

Molal Volume (van der Waals) (van der Waals)

Temperature, Pressure, (ldeal Gas Law), Carbon Dioxide, Oxygen,
K atm L/mol L/mol L/mol
300 1 24.6162 24.5126 24.5928

10 2.4616 2.3545 2.4384

100 0.2462 0.0795 0.2264

500 1 41.0270 40.9821 41.0259
10 4.1027 4.0578 4.1016

100 0.4103 0.3663 04116

700 1 57.4378 57.4179 57.4460
10 5.7438 5.7242 5.7521

100 0.5744 0.5575 0.5842

204

CASE STUDIES: ROOTS OF EQUATIONS

The computation of molal volume from the van der Waals equation can be accom-
plished using any of the numerical methods for finding roots of equations discussed in
Chaps. 5, 6, and 7, with

flv) = (p + %)(v —b) —RT (8.3)
v

In this case, the derivative of f(v) is easy to determine and the Newton-Raphson method is
convenient and efficient to implement. The derivative of f(v) with respect to v is given by

, a 2ab
f(v)=p—ﬁ+F (8.4)

The Newton-Raphson method is described by Eq. (6.6):

f(vi)

f/(vi)

which can be used to estimate the root. For example, using the initial guess of 24.6162, the
molal volume of carbon dioxide at 300 K and 1 atm is computed as 24.5126 L/mol. This
result was obtained after just two iterations and has an &, of less than 0.001 percent.

Similar computations for all combinations of pressure and temperature for both
gases are presented in Table 8.1. It is seen that the results for the ideal gas law differ from
those for van der Waals equation for both gases, depending on specific values for p and
T. Furthermore, because some of these results are significantly different, your design of
the containment vessels would be quite different, depending on which equation of state
was used.

In this case, a complicated equation of state was examined using the Newton-Raphson
method. The results varied significantly from the ideal gas law for several cases. From
a practical standpoint, the Newton-Raphson method was appropriate for this application
because f'(v) was easy to calculate. Thus, the rapid convergence properties of the Newton-
Raphson method could be exploited.

In addition to demonstrating its power for a single computation, the present design
problem also illustrates how the Newton-Raphson method is especially attractive when nu-
merous computations are required. Because of the speed of digital computers, the effi-
ciency of various numerical methods for most roots of equations is indistinguishable for a
single computation. Even a 1-s difference between the crude bisection approach and the ef-
ficient Newton-Raphson does not amount to a significant time loss when only one compu-
tation is performed. However, suppose that millions of root evaluations are required to
solve a problem. In this case, the efficiency of the method could be a deciding factor in the
choice of a technique.

For example, suppose that you are called upon to design an automatic computerized
control system for a chemical production process. This system requires accurate estimates
of molal volumes on an essentially continuous basis to properly manufacture the final
product. Gauges are installed that provide instantaneous readings of pressure and tempera-
ture. Evaluations of v must be obtained for a variety of gases that are used in the process.

For such an application, bracketing methods such as bisection or false position would
probably be too time-consuming. In addition, the two initial guesses that are required for

Vigl =V —

8.2 GREENHOUSE GASES AND RAINWATER 205

8.2

these approaches may also interject a critical delay in the procedure. This shortcoming is
relevant to the secant method, which also needs two initial estimates.

In contrast, the Newton-Raphson method requires only one guess for the root. The
ideal gas law could be employed to obtain this guess at the initiation of the process. Then,
assuming that the time frame is short enough so that pressure and temperature do not vary
wildly between computations, the previous root solution would provide a good guess for
the next application. Thus, the close guess that is often a prerequisite for convergence of
the Newton-Raphson method would automatically be available. All the above considera-
tions would greatly favor the Newton-Raphson technique for such problems.

GREENHOUSE GASES AND RAINWATER
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. Civil engineering is a broad field that includes such diverse areas as structural,
geotechnical, transportation, water-resources, and environmental engineering. The last area has
traditionally dealt with pollution control. However, in recent years, environmental engineers
(as well as chemical engineers) have addressed broader problems such as climate change.

It is well documented that the atmospheric levels of several greenhouse gases has been
increasing over the past 50 years. For example, Fig. 8.1 shows data for the partial pressure
of carbon dioxide (CO;) collected at Mauna Loa, Hawaii from 1958 through 2003. The
trend in the data can be nicely fit with a quadratic polynomial (In Part Five, we will learn
how to determine such polynomials),

Pco, = 0.011825(t — 1980.5)% 4 1.356975(t — 1980.5) -+ 339

where pco, = the partial pressure of CO, in the atmosphere [ppm]. The data indicates that
levels have increased over 19% during the period from 315 to 376 ppm.

FIGURE 8.1
Average annual partial pressures of atmospheric carbon dioxide [ppm) measured ot Mauna log,
Hawaii.

- (J
370 - /
350 [~ /
Pco, =
(ppm) -
330
3 I TS T NS S S N (S S N AN R NI

1950 1960 1970 1980 1990 2000 2010

206

CASE STUDIES: ROOTS OF EQUATIONS

Aside from global warming, greenhouse gases can also influence atmospheric chemistry.
One question that we can address is how the carbon dioxide trend is affecting the pH of rain-
water. Outside of urban and industrial areas, it is well documented that carbon dioxide is the
primary determinant of the pH of the rain. pH is the measure of the activity of hydrogen ions
and, therefore, its acidity. For dilute aqueous solutions, it can be computed as

pH = —log;o[H*] (8.5)

where [H*] is the molar concentration of hydrogen ions.
The following five nonlinear system of equations govern the chemistry of rainwater,

H*][HCO;
K, = 1001 IO] K]H[pcof] (8.6)
_ [HT][co5] (8.7)
[HCO;]
Ky, = [H][OH] (8.8)
cr = KH18§OZ +[HCO5] + [C0%7] ®8.9)
0 = [HCO;1+2[CO5 |+ [OH"] — [H] (8.10)

where Ky = Henry’s constant, and K, K, and K, are equilibrium coefficients. The five
unknowns are ct = total inorganic carbon, [HCO3] = bicarbonate, [CO%‘] = carbonate,
[H*] = hydrogen ion, and [OH~] = hydroxyl ion. Notice how the partial pressure of CO,
shows up in Egs. (8.6) and (8.9).

Use these equations to compute the pH of rainwater given that Ky = 107146,
K; = 10753, K, = 107193 and K,, = 101, Compare the results in 1958 when the pco,
was 315 and in 2003 when it was 375 ppm. When selecting a numerical method for your
computation, consider the following:

e You know with certainty that the pH of rain in pristine areas always falls between 2 and 12.
¢ You also know that your measurement devices can only measured pH to two places of
decimal precision.

Solution. There are a variety of ways to solve this nonlinear system of five equations.
One way is to eliminate unknowns by combining them to produce a single function that
only depends on [HT]. To do this, first solve Egs. (8.6) and (8.7) for

_ K1
HCO;] = ————K 8.11
[HCO;] 05[] M Pco, (8.11)
, K3[HCO;]
COoi = =232 :
[CO57] A (8.12)
Substitute Eq. (8.11) into (8.12)
KoK
[cO3] 2 KuPeo, (8.13)

= 106 [H+]2

8.3 DESIGN OF AN ELECTRIC CIRCUIT 207

8.3

Equations (8.11) and (8.13) can be substituted along with Eq. (8.8) into Eq. (8.10) to give

Kl K2 Kl Kw
0=——+—-K +2——-5K +—— —[HF 8.14
106[H+] H Pco, 106[H+]2 H Pco, [H+ [] ()

Although it might not be apparent, this result is a third-order polynomial in [H*]. Thus, its
root can be used to compute the pH of the rainwater.

Now we must decide which numerical method to employ to obtain the solution. There
are two reasons why bisection would be a good choice. First, the fact that the pH always
falls within the range from 2 to 12, provides us with two good initial guesses. Second,
because the pH can only be measured to two decimal places of precision, we will be satis-
fied with an absolute error of E; ¢ = 0.005. Remember that given an initial bracket and the
desired relative error, we can compute the number of iterations a priori. Using Eq. (5.5),
the result is n = log,(10)/0.005 = 10.9658. Thus, eleven iterations of bisection will pro-
duce the desired precision.

If this is done, the result for 1958 will be a pH of 5.6279 with a relative error of
0.0868%. We can be confident that the rounded result of 5.63 is correct to two decimal
places. This can be verified by performing another run with more iterations. For example,
if we perform 35 iterations, a result of 5.6304 is obtained with an approximate relative error
of g5 = 5.17 x 107°%. The same calculation can be repeated for the 2003 conditions to
give pH = 5.59 with &g, = 0.0874%.

Interestingly, these results indicate that the 19% rise in atmospheric CO; levels has
produced only a 0.67% drop in pH. Although this is certainly true, remember that the pH
represents a logarithmic scale as defined by Eq. (8.5). Consequently, a unit drop in pH rep-
resents a 10-fold increase in hydrogen ion. The concentration can be computed as
[H*] = 10~PH and the resulting percent change can be calculated as 9.1%. Therefore, the
hydrogen ion concentration has increased about 9%.

There is quite a lot of controversy related to the true significance of the greenhouse gas
trends. However, regardless of the ultimate implications, it is quite sobering to realize
that something as large as our atmosphere has changed so much over a relatively short time
period. This case study illustrates how numerical methods can be employed to analyze and
interpret such trends. Over the coming years, engineers and scientists can hopefully use
such tools to gain increased understanding and help rationalize the debate over their
ramifications.

DESIGN OF AN ELECTRIC CIRCUIT
(ELECTRICAL ENGINEERING)

Background. Electrical engineers often use Kirchhoff’s laws to study the steady-state
(not time-varying) behavior of electric circuits. Such steady-state behavior will be exam-
ined in Sec. 12.3. Another important problem involves circuits that are transient in nature
where sudden temporal changes take place. Such a situation occurs following the closing
of the switch in Fig. 8.2. In this case, there will be a period of adjustment following the
closing of the switch as a new steady state is reached. The length of this adjustment period
is closely related to the storage properties of the capacitor and the inductor. Energy storage

208

CASE STUDIES: ROOTS OF EQUATIONS

N\

Switch

¢ .
1

Battery — V, Capacitor % Inductor
+ T+

M\

Resistor

FIGURE 8.2
An electric circuit. When the switch is closed, the current will undergo a series of oscillations
until a new steady sfate is reached.

may oscillate between these two elements during a transient period. However, resistance in
the circuit will dissipate the magnitude of the oscillations.
The flow of current through the resistor causes a voltage drop (Vg) given by

Vg = iR

where i = the current and R = the resistance of the resistor. When R and i have units of
ohms and amperes, respectively, Vg has units of volts.
Similarly, an inductor resists changes in current, such that the voltage drop V| across
itis
Ve =L—
LTt
where L = the inductance. When L and i have units of henrys and amperes, respectively, V.

has units of volts and t has units of seconds.
The voltage drop across the capacitor (V) depends on the charge (q) on it:

Ve = =< 8.15
c=c (8.15)
where C = the capacitance. When the charge is expressed in units of coulombs, the unit of
C is the farad.
Kirchhoff’s second law states that the algebraic sum of voltage drops around a closed
circuit is zero. After the switch is closed we have

di N
L—+Ri+—==0 1
it + Ri + C (8.16)
However, the current is related to the charge according to
. dg
= — 8.17
I at (8.17)
Therefore,
d?q dg 1

8.4 PIPE FRICTION 209

FIGURE 8.3

The charge on a capacitor as a
function of time following the

closing of the switch in
Fig. 8.2.

8.4

This is a second-order linear ordinary differential equation that can be solved using the
methods of calculus. This solution is given by

—Rt/(2L) 1 R ?
q(t) = qee cos c \ar t (8.19)

where at t =0, q=qo= VoC, and V, = the voltage from the charging battery. Equa-
tion (8.19) describes the time variation of the charge on the capacitor. The solution q(t) is
plotted in Fig. 8.3.

Atypical electrical engineering design problem might involve determining the proper
resistor to dissipate energy at a specified rate, with known values for L and C. For this prob-
lem, assume the charge must be dissipated to 1 percent of its original value (q/qg = 0.01)
int=0.05s,withL=5Hand C =10"*F.

Solution. It is necessary to solve Eq. (8.19) for R, with known values of g, qo, L, and C.
However, a numerical approximation technique must be employed because R is an implicit
variable in Eq. (8.19). The bisection method will be used for this purpose. The other meth-
ods discussed in Chaps. 5 and 6 are also appropriate, although the Newton-Raphson
method might be deemed inconvenient because the derivative of Eq. (8.19) is a little cum-
bersome. Rearranging Eg. (8.19),

1 R \? q
_ a—Rt/2L) _ _
f(Ry=e cos{ C <2L) t:| %

or using the numerical values given,
f(R) = e %905R ¢os[/2000 — 0.01R2 (0.05)] — 0.01 (8.20)

Examination of this equation suggests that a reasonable initial range for R is 0 to 400 Q
(because 2000 — 0.01R? must be greater than zero). Figure 8.4, a plot of Eq. (8.20), con-
firms this. Twenty-one iterations of the bisection method give R = 328.1515 Q, with an
error of less than 0.0001 percent.

Thus, you can specify a resistor with this rating for the circuit shown in Fig. 8.2 and
expect to achieve a dissipation performance that is consistent with the requirements of the
problem. This design problem could not be solved efficiently without using the numerical
methods in Chaps. 5 and 6.

PIPE FRICTION (MECHANICAL/AEROSPACE ENGINEERING)

Background. Determining fluid flow through pipes and tubes has great relevance in
many areas of engineering and science. In mechanical and aerospace engineering, typical
applications include the flow of liquids and gases through cooling systems.

The resistance to flow in such conduits is parameterized by a dimensionless number
called the friction factor. For turbulent flow, the Colebrook equation provides a means to
calculate the friction factor,

0= = 42010 (LJFﬂ) 8.21)
=77 V%9370 T ReyT '

210

CASE STUDIES: ROOTS OF EQUATIONS

f(R)

Root = 325

0.0

-0.2

-0.4

-0.6

FIGURE 8.4
Plot of Eq. (8.20) used fo obtain initial guesses for R that bracket the root.

where ¢ = the roughness (m), D = diameter (m), and Re = the Reynolds number,
pVD
"
where p = the fluid’s density [kg/m?], V = its velocity [m/s], and . = dynamic viscosity
[N - s/m?]. In addition to appearing in Eq. (8.21), the Reynolds number also serves as the
criterion for whether flow is turbulent (Re > 4000).

Re

In the present case study, we will illustrate how the numerical methods covered in this
part of the book can be employed to determine f for air flow through a smooth, thin tube.
For this case, the parameters are p = 1.23 kg/m®, i = 1.79 x 10° N - s/m?, D = 0.005 m,
V =40 m/s and ¢ = 0.0015 mm. Note that friction factors range from about 0.008 to 0.08.
In addition, an explicit formulation called the Swamee-Jain equation provides an approxi-
mate estimate,

1.325
f = (8.22)

n(+5.74 2
3.7D ' Re09

Solution. The Reynolds number can be computed as

_ pVD _ 1.23(40)0.005

Re =
W 1.79 x 105

= 13,743

8.4 PIPE FRICTION 211

a(f)

FIGURE 8.5

This value along with the other parameters can be substituted into Eq. (8.21) to give

N S <0.0000015+ 251)
9t =" T 201%9\ 370,005 " 13,7437

Before determining the root, it is advisable to plot the function to estimate initial
guesses and to anticipate possible difficulties. This can be done easily with tools such as
MATLAB, Excel, or Mathcad. For example, a plot of the function can be generated with
the following MATLAB commands

>> rho=1.23;mu=1.79e-5;D=0.005;V=40;e=0.0015/1000;

>> Re=rho*V*D/mu;

>> g=@(F) 1/sqgrt(f)+2*1ogl0(e/(3.7*D)+2.51/(Re*sqrt(F)));
>> fplot(g,[0.-008 0.08]),grid,xlabel(“f*),ylabel(“g(f)”)

As in Fig. 8.5, the root is located at about 0.03.

Because we are supplied initial guesses (x; = 0.008 and x, = 0.08), either of the
bracketing methods from Chap. 5 could be used. For example, bisection gives a value of
f = 0.0289678 with a percent relative error of error of 5.926 x 107 in 22 iterations. False
position yields a result of similar precision in 26 iterations. Thus, although they produce the
correct result, they are somewhat inefficient. This would not be important for a single ap-
plication, but could become prohibitive if many evaluations were made.

We could try to attain improved performance by turning to an open method. Because
Eq. (8.21) is relatively straightforward to differentiate, the Newton-Raphson method is
a good candidate. For example, using an initial guess at the lower end of the range
(xo = 0.008), Newton-Raphson converges quickly to 0.0289678 with an approximate error
of 6.87 x 107%% in only 6 iterations. However, when the initial guess is set at the upper end
of the range (xo = 0.08), the routine diverges!

212

CASE STUDIES: ROOTS OF EQUATIONS

As can be seen by inspecting Fig. 8.5, this occurs because the function’s slope at the
initial guess causes the first iteration to jJump to a negative value. Further runs demonstrate
that for this case, convergence only occurs when the initial guess is below about 0.066.

So we can see that although the Newton-Raphson is very efficient, it requires good ini-
tial guesses. For the Colebrook equation, a good strategy might be to employ the Swamee-
Jain equation (Eqg. 8.22) to provide the initial guess as in

1.325
f= 5 = 0.029031

0.0000015 5.74
In +
3.7(0.005) = 13743°%°
For this case, Newton-Raphson converges in only 3 iterations to quickly to 0.0289678 with
an approximate error of 8.51 x 107109,
Aside from our homemade functions, we can also use professional root finders like
MATLAB’s built-in fzero function. However, just as with the Newton-Raphson method,

divergence also occurs when fzero function is used with a single guess. However, in this
case, guesses at the lower end of the range cause problems. For example,

>> rho=1.23;mu=1.79e-5;D=0.005;V=40;e=0.0015/1000;

>> Re=rho*V*D/mu

>> g=@(F) 1/sqrt(F)+2*1ogl0(e/(3.7*D)+2.51/(Re*sqrt(f)));
>> fzero(g,0.008)

Exiting fzero: aborting search for an interval containing a
sign change because complex function value encountered
during search. (Function value at -0.0028 is -4.92028-
20.24231.)
Check function or try again with a different starting value.
ans =

NaN

If the iterations are displayed using optimset (recall Sec. 7.7.2), it is revealed that a neg-
ative value occurs during the search phase before a sign change is detected and the routine
aborts. However, for single initial guesses above about 0.016, the routine works nicely.
For example, for the guess of 0.08 that caused problems for Newton-Raphson, fzero does
just fine,

>> fzero(g,0.08)

ans =
0.02896781017144

As a final note, let’s see whether convergence is possible for simple fixed-point
iteration. The easiest and most straightforward version involves solving for the first f in
Eqg. (8.21),

0.25

('09 (3;D + Rze.lei»z

The two-curve display of this function depicted indicates a surprising result (Fig. 8.6).
Recall that fixed-point iteration converges when the y, curve has a relatively flat slope

fii1= (8.23)

PROBLEMS

213

0.05

0.04 [~

Y1=X

0.03 —

0.02 —

0.01—

¥2=9(x)

FIGURE 8.6

0.02 0.04 0.06 0.08 X

(i.e., [g'(&)| < 1).Asindicated by Fig. 8.6, the fact that the y, curve is quite flat in the range
from f = 0.008 to 0.08 means that not only does fixed-point iteration converge, but it con-
verges fairly rapidly! In fact, for initial guesses anywhere between 0.008 and 0.08, fixed-
point iteration yields predictions with percent relative errors less than 0.008% in six or
fewer iterations. Thus, this simple approach that requires only one guess and no derivative
estimates performs really well for this particular case.

The take-home message from this case study is that even great, professionally-developed
software like MATLAB is not always foolproof. Further, there is usually no single method
that works best for all problems. Sophisticated users understand the strengths and weaknesses
of the available numerical techniques. In addition, they understand enough of the underlying

theory so that they can effectively deal with situations where a method breaks down.

PROBLEMS

Chemical/Bio Engineering

8.1 Perform the same computation as in Sec. 8.1, but for acetone
(a =14.09 and b = 0.0994) at a temperature of 400 K and p of 2.5
atm. Compare your results with the ideal gas law. Use any of the
numerical methods discussed in Chaps. 5 and 6 to perform the com-
putation. Justify your choice of technique.

8.2 In chemical engineering, plug flow reactors (that is, those in
which fluid flows from one end to the other with minimal mixing
along the longitudinal axis) are often used to convert reactants into
products. It has been determined that the efficiency of the conver-
sion can sometimes be improved by recycling a portion of the

product stream so that it returns to the entrance for an additional
pass through the reactor (Fig. P8.2). The recycle rate is defined as

_volume of fluid returned to entrance
B volume leaving the system

Suppose that we are processing a chemical Ato generate a product B.
For the case where A forms B according to an autocatalytic reaction
(that is, in which one of the products acts as a catalyst or stimulus
for the reaction), it can be shown that an optimal recycle rate
must satisfy

214

CASE STUDIES: ROOTS OF EQUATIONS

Feed >

Product

Plug flow reactor

Recycle

Figure P8.2
Schematic representation of a plug flow reactor with recycle.

R+1
~ R[L+ R — Xar)]

1+RA—Xa) _

In
R(1 — Xar)

where X a = the fraction of reactant A that is converted to product
B. The optimal recycle rate corresponds to the minimum-sized
reactor needed to attain the desired level of conversion. Use a
numerical method to determine the recycle ratios needed to
minimize reactor size for a fractional conversion of X = 0.96.
8.3 Avreversible chemical reaction

2A+B=C

can be characterized by the equilibrium relationship
Ce
" o
where the nomenclature c; represents the concentration of con-
stituent i. Suppose that we define a variable x as representing the

number of moles of C that are produced. Conservation of mass can
be used to reformulate the equilibrium relationship as

. (Cco+X)
(Ca,0 — 2X)%(Co.0 — X)
where the subscript 0 designates the initial concentration of each
constituent. If K =0.016, ca0 =42, cpo =28, and cco =4,
determine the value of x. (a) Obtain the solution graphically. (b) On
the basis of (a), solve for the root with initial guesses of x;, = 0 and
Xu = 20 to s = 0.5%. Choose either bisection or false position to

obtain your solution. Justify your choice.
8.4 The following chemical reactions take place in a closed system

2A+B=C
A+D=C

At equilibrium, they can be characterized by

Ce
Ki= 5o
C5Ch

c

Ky = —
CaCd

where the nomenclature c; represents the concentration of constituent
i. If X1 and x; are the number of moles of C that are produced due to

the first and second reactions, respectively, use an approach similar to
that of Prob. 8.3 to reformulate the equilibrium relationships in terms
of the initial concentrations of the constituents. Then, use the
Newton-Raphson method to solve the pair of simultaneous nonlinear
equations for x; and X if Ky =4x107% K, =3.7x 1072,
Ca,0 =50, Cho =20, Cco=05, and ¢4 =10. Use a graphical
approach to develop your initial guesses.

8.5 In a chemical engineering process, water vapor (H,O) is
heated to sufficiently high temperatures that a significant portion
of the water dissociates, or splits apart, to form oxygen (O,) and
hydrogen (H,):

H,O = H; + 310,

If it is assumed that this is the only reaction involved, the mole
fraction x of H,O that dissociates can be represented by

X 2pt
K = P8.3
1—-xV2+x ()

where K = the reaction equilibrium constant and p; = the total
pressure of the mixture. If p; = 3.5 atm and K = 0.04, determine
the value of x that satisfies Eq. (P8.3).
8.6 The following equation pertains to the concentration of a
chemical in a completely mixed reactor:

c= Cin(l _ e70A04t) + C0e70A04t
If the initial concentration cg =4 and the inflow concentration
Cin = 10, compute the time required for ¢ to be 93 percent of ciy.
8.7 The Redlich-Kwong equation of state is given by

RT a
v—b yw+bJ/T

where R = the universal gas constant [= 0.518 kJ/(kg K)], T =
absolute temperature (K), p = absolute pressure (kPa), and v = the
volume of a kg of gas (m®/kg). The parameters a and b are
calculated by

p=

RZT 2.5 T
a=0427—2C b = 0.0866R —

Pec Pec

where p. = critical pressure (kPa) and T, = critical temperature
(K). As a chemical engineer, you are asked to determine the amount
of methane fuel (p; = 4600 kPaand T, = 191 K) that can be held in
a3-m3tank at atemperature of —40°C with a pressure of 65,000 kPa.
Use a root-locating method of your choice to calculate v and then
determine the mass of methane contained in the tank.

8.8 The volume V of liquid in a hollow horizontal cylinder of
radius r and length L is related to the depth of the liquid h by

V = [rZ cost (?) —(r —h)y2rh — hz] L

PROBLEMS

215

Determine h givenr =2 m, L =5 m, and V = 8 m®. Note that if
you are using a programming language or software tool that is not
rich in trigonometric functions, the arc cosine can be computed
with

cos™?

x—z—tan‘1< X)
2 J1 — x2

8.9 The volume V of liquid in a spherical tank of radius r is related
to the depth h of the liquid by

_ wh?@r —h)

\
3

Determine hgivenr =1 mand V = 0.5 m®,
8.10 For the spherical tank in Prob. 8.9, it is possible to develop
the following two fixed-point formulas:

L [P ev/m
B 3r

and

h= 33<rh2—!)
T

Ifr =1 mandV = 0.75 m3, determine whether either of these is
stable, and the range of initial guesses for which they are stable.
8.11 The Ergun equation, shown below, is used to describe the
flow of a fluid through a packed bed. AP is the pressure drop, p is
the density of the fluid, G, is the mass velocity (mass flow rate
divided by cross-sectional area), Dy, is the diameter of the particles
within the bed, w is the fluid viscosity, L is the length of the bed,
and ¢ is the void fraction of the bed.

APp D, &° 1—¢

G2 Li-s 150(DpGo/M) +1.75

Given the parameter values listed below, find the void fraction ¢ of
the bed.

Dp—GO = 1000

APpDp

=10
GIL

8.12 The pressure drop in a section of pipe can be calculated as

LoV?2

Ap = f
TS

where Ap = the pressure drop (Pa), f = the friction factor, L =
the length of pipe [m], p = density (kg/m®), V = velocity (m/s),
and D = diameter (m). For turbulent flow, the Colebrook equation
provides a means to calculate the friction factor,

1 201 e 2.51
JE T 09(3.70 + Reﬂ)
where ¢ = the roughness (m), and Re = the Reynolds number,
"
where . = dynamic viscosity (N - s/m?).
(a) Determine Ap for a 0.2-m-long horizontal stretch of smooth
drawntubing given p = 1.23 kg/m3, u = 1.79 x 10° N - s/m?,
D =0.005m, V =40 m/s, and ¢ = 0.0015 mm. Use a numer-
ical method to determine the friction factor. Note that smooth
pipes with Re < 10%, a good initial guess can be obtained using
the Blasius formula, f = 0.316/Re%%.
(b) Repeat the computation but for a rougher commercial steel
pipe (¢ = 0.045 mm).
8.13 The operation of a constant density plug flow reactor for the
production of a substance via an enzymatic reaction is described by
the equation below, where V is the volume of the reactor, F is the
flow rate of reactant C, Cj, and Co are the concentrations of reac-
tant entering and leaving the reactor, respectively, and K and Kmax
are constants. For a 500-L reactor, with an inlet concentration of
Cin = 0.5 M, an inlet flow rate of 40 L/s, kmax = 5 x 1073 571, and
K = 0.1 M, find the concentration of C at the outlet of the reactor.

v Cou K 1
= +Ldc
F C kmaxc I(malx

in

Civil and Environmental Engineering

8.14 In structural engineering, the secant formula defines the force
per unit area, P /A, that causes a maximum stress o in a column
of given slenderness ratio L /k:

P Om
A~ 1+ (ec/k2)sec[0.5vP/(EA)L/K)]

where ec/k? = the eccentricity ratio and E = the modulus of elas-
ticity. If for a steel beam, E = 200,000 MPa, ec/k? = 0.4, and
om = 250 MPa, compute P /A for L/k = 50. Recall that sec X =
1/cosx.

8.15 In environmental engineering (a specialty area in civil
engineering), the following equation can be used to compute the
oxygen level ¢ (mg/L) in a river downstream from a sewage
discharge:

¢ =10 — 20(e~ 01> _

where X is the distance downstream in kilometers.

(a) Determine the distance downstream where the oxygen level
first falls to a reading of 5 mg/L. (Hint: It is within 2 km of the
discharge.) Determine your answer to a 1% error. Note that lev-
els of oxygen below 5 mg/L are generally harmful to gamefish
such as trout and salmon.

(b) Determine the distance downstream at which the oxygen is at a
minimum. What is the concentration at that location?

e70A5X)

216

CASE STUDIES: ROOTS OF EQUATIONS

Figure P8.17 3
(a) Forces acting on a sectfion

AB of a flexible hanging cable. w Tyo s e
The load is uniform along the

cable (but not uniform per the x

horizontal distance x]. (b) A free- (@) (b)

body diagram of section AB.

8.16 The concentration of pollutant bacteria c in a lake decreases
according to

c = 756—1.5t + 208—0.075l

Determine the time required for the bacteria concentration to be
reduced to 15 using (@) the graphical method and (b) using the
Newton-Raphson method with an initial guess of t =6 and a
stopping criterion of 0.5%. Check your result.

8.17 A catenary cable is one that is hung between two points not in
the same vertical line. As depicted in Fig. P8.174a, it is subject to no
loads other than its own weight. Thus, its weight (N/m) acts as a
uniform load per unit length along the cable. A free-body diagram
of a section AB is depicted in Fig. P8.17b, where T and Tg are the
tension forces at the end. Based on horizontal and vertical force
balances, the following differential equation model of the cable can
be derived:

2 2
d_y J— ﬂ 1+ d_y
dx2 Ta dx

Calculus can be employed to solve this equation for the height y of
the cable as a function of distance x,

w X TA
Ta

T
y = ~2 cosh +Yo— —
where the hyperbolic cosine can be computed by

w w

1
coshx = E(eX +e7

Use a numerical method to calculate a value for the parameter Ta
given values for the parameters w = 12 and yp = 6, such that the
cable has a height of y = 15 at x = 50.

8.18 Figure P8.18a shows a uniform beam subject to a linearly in-
creasing distributed load. The equation for the resulting elastic
curve is (see Fig. P8.18b)

" 120EIL

Use bisection to determine the point of maximum deflection (that
is, the value of x where dy/dx = 0). Then substitute this value into
Eq. (P8.18) to determine the value of the maximum deflection. Use
the following parameter values in your computation: L = 600 cm,
E = 50,000 kN/cm?, | = 30,000 cm*, and wo = 2.5 kN/cm.

(—x5 4+ 2L%x% — L*x)

y (P8.18)

Figure P8.18

Wo
L
(@)
(x=Ly=0)
(x=0,y=0) &
X
(b)

PROBLEMS

217

20 kips/ft
150 kip-ft 15 kips
0/) |
T t i
] 5] o PO o]

Figure P8.24

8.19 The displacement of a structure is defined by the following
equation for a damped oscillation:

y = 9e K cos wt

where k = 0.7 and o = 4.

(a) Use the graphical method to make an initial estimate of the
time required for the displacement to decrease to 3.5.

(b) Use the Newton-Raphson method to determine the root to
&s = 0.01%.

(c) Use the secant method to determine the root to &5 = 0.01%.

8.20 The Manning equation can be written for a rectangular open

channel as

_ W/S(BH)%3
Q= n(B 4+ 2H)2/3

where Q = flow [m%s], S = slope [m/m], H = depth [m], and n =
the Manning roughness coefficient. Develop a fixed-point iteration
scheme to solve this equation for H given Q =5, S = 0.0002,
B = 20, and n = 0.03. Prove that your scheme converges for all
initial guesses greater than or equal to zero.

8.21 In ocean engineering, the equation for a reflected standing
wave in a harbor is given by 2 = 16,t = 12, v = 48:

. (27X 2t _
h =hg [sm (T) cos (Tv> +e X]

Solve for the lowest positive value of x if h = 0.4hy.

8.22 You buy a $25,000 piece of equipment for nothing down and
$5,500 per year for 6 years. What interest rate are you paying? The
formula relating present worth P, annual payments A, number of
years n, and interest rate i is

i@a+i"
1+in—-1

8.23 Many fields of engineering require accurate population
estimates. For example, transportation engineers might find it

necessary to determine separately the population growth trends of
a city and adjacent suburb. The population of the urban area is
declining with time according to

Py(t) = Pu,maxe_kut + Py.min
while the suburban population is growing, as in

Ps, max

Ps(t) =
s 1+ [P max/Po — 1]e %t

where Py max, Ku, Ps.max, Po, and ks = empirically derived parame-
ters. Determine the time and corresponding values of Py(t) and
Ps (t) when the suburbs are 20% larger than the city. The parameter
values are Py max = 75,000, k, = 0.045/yr, Py min = 100,000
people, Psmax = 300,000 people, Py = 10,000 people, ks =
0.08/yr. To obtain your solutions, use (&) graphical, (b) false-
position, and (c) modified secant methods.

8.24 A simply supported beam is loaded as shown in Fig. P8.24.
Using singularity functions, the shear along the beam can be
expressed by the equation:

V(x) =20[(x — 0)} — (x —5)}]1 - 15(x — 8)° —57
By definition, the singularity function can be expressed as follows:

X —a) = {(x—a)n whenx>a}

0 whenx < a

Use a numerical method to find the point(s) where the shear equals
zero.

8.25 Using the simply supported beam from Prob. 8.24, the
moment along the beam, M (x), is given by:

M(X) = —10[(x — 0)2 — (x — 5)%] + 15 (x — 8)*
+ 150 (x — 7)° 4 57x

Use a numerical method to find the point(s) where the moment
equals zero.

218

CASE STUDIES: ROOTS OF EQUATIONS

8.26 Using the simply supported beam from Prob. 8.24, the slope
along the beam is given by:

duy o T10 08 m31 e 22 a2
dx(x)_ 3[(x 0)° — (x 5)]+2<x 8)

57
+150 (x — 7)Y + 7x2 —238.25

Use a numerical method to find the point(s) where the slope equals
zero.

8.27 Using the simply supported beam from Prob. 8.24, the
displacement along the beam is given by:

-5 15
Uy 00 = =[x -0 —(x —5)*T+ 5 x- 8)°

57
+75(x =72 + gx3 — 238.25x

(a) Find the point(s) where the displacement equals zero.
(b) How would you use a root location technique to determine
the location of the minimum displacement?

Electrical Engineering

8.28 Perform the same computation as in Sec. 8.3, but determine
the value of C required for the circuit to dissipate to 1% of its orig-
inal value int =0.05 s, given R =280, and L =7.5 H. Use
(a) a graphical approach, (b) bisection, and (c) root location soft-
ware such as the Excel Solver, the MATLAB function fzero, or
the Mathcad function root.

8.29 An oscillating current in an electric circuit is described by
i = 9e~tcos(2t), where t is in seconds. Determine all values of t
such thati = 3.5.

8.30 The resistivity p of doped silicon is based on the charge q on
an electron, the electron density n, and the electron mobility .. The
electron density is given in terms of the doping density N and
the intrinsic carrier density n;. The electron mobility is described
by the temperature T, the reference temperature Tp, and the
reference mobility wo. The equations required to compute the
resistivity are

1
p=_—
qnu

where

n= (Nt NZran?) and = (TL>

Determine N, given To = 300 K, T = 1000 K, 1o = 1350 cm?
(Vs)™1,qg=17x10" C,n; =6.21 x 10° cm~2, and a desired
p =6.5x 108 Vs cm/C. Use (a) bisection and (b) the modified
secant method.

8.31 A total charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge q is located at a distance
x from the center of the ring (Fig. P8.31). The force exerted on the
charge by the ring is given by

1 gQx
" 4meg (X2 + a?)3/2

where eg = 8.85 x 10712 C2/(N m?). Find the distance x where the
force is 1N if g and Q are 2 x 10~ C for a ring with a radius of
0.9m.

~—
>
o

Q
Figure P8.31

8.32 Figure P8.32 shows a circuit with a resistor, an inductor, and
a capacitor in parallel. Kirchhoff’s rules can be used to express the
impedance of the system as

1 1 1\?
= | = C - ——
2 \/R2+<w a)L)

where Z = impedance (£2) and w = the angular frequency. Find the
w that results in an impedance of 75 Q using both bisection and
false position with initial guesses of 1 and 1000 for the following
parameters: R =225 Q,C = 0.6 x 10-% F, and L = 0.5 H. Deter-
mine how many iterations of each technique are necessary to deter-
mine the answer to &5 = 0.1%. Use the graphical approach to
explain any difficulties that arise.

Figure P8.32

=

®

M echanical and Aerospace Engineering
8.33 Beyond the Colebrook equation, other relationships, such as
the Fanning friction factor f, are available to estimate friction in

PROBLEMS

219

pipes. The Fanning friction factor is dependent on a number of pa-
rameters related to the size of the pipe and the fluid, which can all
be represented by another dimensionless quantity, the Reynolds
number Re. A formula that predicts f given Re is the von Karman
equation,

1

Nl 4logyy(Rey/f) — 0.4

Typical values for the Reynolds number for turbulent flow are
10,000 to 500,000 and for the Fanning friction factor are 0.001 to
0.01. Develop a function that uses bisection to solve for f given a
user-supplied value of Re between 2,500 and 1,000,000. Design the
function so that it ensures that the absolute error in the result is
Ead < 0.000005.

8.34 Real mechanical systems may involve the deflection of non-
linear springs. In Fig. P8.34, a mass m is released a distance h above
a nonlinear spring. The resistance force F of the spring is given by

F=- (kld + k2d3/2)
Conservation of energy can be used to show that

_ 2ked®?

0
5

1
+ §k1d2 — mgd — mgh

Solve for d, given the following parameter values: k; = 40,000 g/s?,
ko = 40g/(s> m*%), m =95¢g,g = 9.81 m/s?, andh = 0.43m.

(@) (b)
Figure P8.34

8.35 Mechanical engineers, as well as most other engineers, use
thermodynamics extensively in their work. The following
polynomial can be used to relate the zero-pressure specific heat of
dry air, ¢, kd/(kg K), to temperature (K):

Cp = 0.99403 + 1.671 x 107*T +9.7215 x 107872
—9.5838 x 1071173 4+ 1.9520 x 1071474

Determine the temperature that corresponds to a specific heat of
1.2 kd/(kg K).

8.36 Aerospace engineers sometimes compute the trajectories of
projectiles like rockets. A related problem deals with the trajectory
of a thrown ball. The trajectory of a ball is defined by the (x, y)
coordinates, as displayed in Fig. P8.36. The trajectory can be
modeled as

g 2

= (tanbp)X — —5———
y = (tanéo) 2v2 cos? 6

+ Yo

Find the appropriate initial angle 6o, if the initial velocity
vo = 20 m/s and the distance to the catcher x is 35 m. Note that the
ball leaves the thrower’s hand at an elevation of yo = 2 m and the
catcher receives it at 1 m. Express the final result in degrees. Use a
value of 9.81 m/s? for g and employ the graphical method to
develop your initial guesses.

Figure P8.36

8.37 Thegeneral form for athree-dimensional stress field is given by

Oxx Oxy Oxz
Oxy Oyy Oyz
Oxz Oyz Ozz

where the diagonal terms represent tensile or compressive stresses
and the off-diagonal terms represent shear stresses. A stress field
(in MPa) is given by

10 14 25
14 7 15
25 15 16

To solve for the principal stresses, it is necessary to construct the
following matrix (again in MPa):
10—-0 14 25
14 7T—o 15
25 15 16—-o0

220

CASE STUDIES: ROOTS OF EQUATIONS

o1, 02, and o3 can be solved from the equation
od—lo24+ 1o —111 =0
where
| = oyx +Uyy + 02z
Il = oxxoyy + 0xx0z7 + Oyy07; — O‘Xzy — axzz — cffz
1 = oyxoyyos, — O'XXU)%Z — ayyaxzz — Uzzdxzy + 20xy0x;0y;

I, 11, and 111l are known as the stress invariants. Find o1, o7, and o3
using a root-finding technique.

8.38 The upward velocity of a rocket can be computed by the
following formula:

v=uln

mo — qt ot

where v = upward velocity, u = the velocity at which fuel is
expelled relative to the rocket, mg = the initial mass of the rocket
at time t = 0, g = the fuel consumption rate, and g = the down-
ward acceleration of gravity (assumed constant = 9.81 m/s?). If
u = 2000 m/s, mg = 150,000 kg, and g = 2700 kg/s, compute the
time at which v = 750 m/s. (Hint: t is somewhere between 10 and
50 s.) Determine your result so that it is within 1% of the true value.
Check your answer.

8.39 The phase angle ¢ between the forced vibration caused by the
rough road and the motion of the car is given by

2(c/cc)(w/p)

BN = T wp)?

As a mechanical engineer, you would like to know if there are cases
where ¢ = w/3 — 1. Use the other parameters from the section to
set up the equation as a roots problem and solve for w.

8.40 Two fluids at different temperatures enter a mixer and come
out at the same temperature. The heat capacity of fluid A is
given by:

Cp = 3.381 + 1.804 x 107°T — 4.300 x 107°T?
and the heat capacity of fluid B is given by:

Cp = 8.592 +1.290 x 107'T —4.078 x 107°T?

where ¢, is in units of cal/mol K, and T is in units of K. Note that

T2
AH =f cpdT
T

1

A enters the mixer at 400°C. B enters the mixer at 700°C. There is
twice as much A as there is B entering into the mixer. At what tem-
perature do the two fluids exit the mixer?

8.41 A compressor is operating at compression ratio R of 3.0
(the pressure of gas at the outlet is three times greater than the
pressure of the gas at the inlet). The power requirements of the
compressor Hp can be determined from the equation below.
Assuming that the power requirements of the compressor are
exactly equal to zRT1 /MW, find the polytropic efficiency n of the
compressor. The parameter z is compressibility of the gas under
operating conditions of the compressor, R is the gas constant, T; is
the temperature of the gas at the compressor inlet, and MW is the
molecular weight of the gas.

. ZzRTy n

HP = RM-1/n _

MWn—l(C y

8.42 In the thermos shown in Fig. P8.42, the innermost compart-
ment is separated from the middle container by a vacuum. There is
a final shell around the thermos. This final shell is separated from
the middle layer by a thin layer of air. The outside of the final shell
comes in contact with room air. Heat transfer from the inner com-
partment to the next layer q; is by radiation only (since the space is
evacuated). Heat transfer between the middle layer and outside
shell g, is by convection in a small space. Heat transfer from the
outside shell to the air gz is by natural convection. The heat flux
from each region of the thermos must be equal—that is,
g1 = 02 = Q3. Find the temperatures T; and T, at steady state. Ty is
450°C and T3 = 25°C.

Q1 = 107°[(To + 273)* — (T1 + 273)*]
Q2 =4(Ty — To)
gs = 1.3(To — Ta)*/3

Figure P8.42

- —

To Ty

T

PROBLEMS

221

8.43 Figure P8.43 shows three reservoirs connected by circular
pipes. The pipes, which are made of asphalt-dipped cast iron
(¢ = 0.0012 m), have the following characteristics:

Pipe 1 2 3
length, m 1800 500 1400
Diameter, m 04 0.25 0.2
Flow, m3/s 2 0.1 2

If the water surface elevations in Reservoirs A and C are 200 and
172.5 m, respectively, determine the elevation in Reservoir B and
the flows in pipes 1 and 3. Note that the kinematic viscosity of
water is 1 x 107® m?/s and use the Colebrook equation to deter-
mine the friction factor (recall Prob. 8.12).

Figure P8.43

8.44 A fluid is pumped into the network of pipes shown in
Fig. P8.44. At steady state, the following flow balances must hold,

Q1=Q2+ Q3
Q3 =Q4+ Qs

Qs = Qs + Q7
where Q; = flow in pipe i(m%/s). In addition, the pressure drops
around the three right-hand loops must equal zero. The pressure
drop in each circular pipe length can be computed with

16 fLp ,

T 72 2D5 Q

where AP = the pressure drop (Pa), f = the friction factor
(dimensionless), L = the pipe length (m), p = the fluid density
(kg/m®), and D = pipe diameter (m). Write a program (or develop
an algorithm in a mathematics software package) that will allow
you to compute the flow in every pipe length given that

o} oy o oy

Qio
P
.

Figure P8.44

Q: =1md¥sand p = 1.23 kg/m. All the pipes have D = 500 mm
and f = 0.005. The pipe lengthsare: L3 = Ls = Lg=Lg =2 m;
L2=L4=L6=4m;andL7=8m.

8.45 Repeat Prob. 8.44, but incorporate the fact that the friction
factor can be computed with the von Karman equation,

1
—— =4logy(Rey/ f) — 0.4
«/T 10 f
where Re = the Reynolds number
Re= 2YP
"

where V = the velocity of the fluid in the pipe (m/s) and u =
dynamic viscosity (N -s/m?). Note that for a circular pipe
V = 4Q/xD?. Also, assume that the fluid has a viscosity of
1.79 x 107° N - s/m?.

8.46 The space shuttle, at lift-off from the launch pad, has four
forces acting on it, which are shown on the free-body diagram
(Fig. P8.46). The combined weight of the two solid rocket boosters
and external fuel tank is Wg = 1.663 x 10° Ib. The weight of the
orbiter with a full payload is Ws = 0.23 x 108 Ib. The combined
thrust of the two solid rocket boosters is Tg = 5.30 x 106 Ib. The
combined thrust of the three liquid fuel orbiter engines is
Ts = 1.125 x 10° Ib.

At liftoff, the orbiter engine thrust is directed at angle 6 to
make the resultant moment acting on the entire craft assembly
(external tank, solid rocket boosters, and orbiter) equal to zero.
With the resultant moment equal to zero, the craft will not rotate
about its mass center G at liftoff. With these forces, the craft will
have a resultant force with components in both the vertical and
horizontal direction. The vertical resultant force component is what
allows the craft to lift off from the launch pad and fly vertically.

222 CASE STUDIES: ROOTS OF EQUATIONS

External tank

|
! <—L—'— Solid rocket
| | | booster
a

|

|

G

>/\l|\7 Orbiter

Figure P8.46

The horizontal resultant force component causes the craft to fly
horizontally. The resultant moment acting on the craft will be zero
when 6 is adjusted to the proper value. If this angle is not adjusted
properly, and there is some resultant moment acting on the craft,
the craft will tend to rotate about it mass center.

(a) Resolve the orbiter thrust Ts into horizontal and vertical compo-
nents, and then sum moments about point G, the craft mass
center. Set the resulting moment equation equal to zero. This
equation can now be solved for the value of 6 required for liftoff.
Derive an equation for the resultant moment acting on the craft
in terms of the angle 6. Plot the resultant moment as a function
of the angle 6 over a range of —5 radians to +5 radians.

(c) Write a computer program to solve for the angle 6 using
Newton’s method to find the root of the resultant moment
equation. Make an initial first guess at the root of interest using
the plot. Terminate your iterations when the value of 6 has
better than five significant figures.

Repeat the program for the minimum payload weight of the
orbiter of Ws = 195,000 Ib.

(b

~

«

~

PT2.4

EPILOGUE: PART TWO

TRADE-OFFS

Table PT2.3 provides a summary of the trade-offs involved in solving for roots of algebraic and
transcendental equations. Although graphical methods are time-consuming, they provide in-
sight into the behavior of the function and are useful in identifying initial guesses and potential
problems such as multiple roots. Therefore, if time permits, a quick sketch (or better yet, acom-
puterized graph) can yield valuable information regarding the behavior of the function.

The numerical methods themselves are divided into two general categories: bracketing
and open methods. The former requires two initial guesses that are on either side of a root.
This “bracketing” is maintained as the solution proceeds, and thus, these techniques are
always convergent. However, a price is paid for this property in that the rate of conver-
gence is relatively slow.

TABLE PT2.3 Comparison of the characteristics of alternative methods for finding roots of algebraic and
transcendental equations. The comparisons are based on general experience and do not account for the
behavior of specific functions.

Method Type Guesses Convergence Stability Programming Comments

Direct Analytical — — —

Graphical Visual — — — — Imprecise

Bisection Bracketing 2 Slow Always Easy

False-position Bracketing 2 Slow/medium Always Easy

Modified FP Bracketing 2 Medium Always Easy

Fixed-point Open 1 Slow Possibly divergent Easy

iteration

Newton-Raphson ~ Open 1 Fast Possibly divergent Easy Requires
evaluation of f(x)

Modified Newton- Open 1 Fast (multiple), Possibly divergent Easy Requires

Raphson medium (single) evaluation of

f'(x) and '(x)

Secant Open 2 Medium/fast Possibly divergent Easy Initial guesses do
not have fo
bracket the root

Modified secant Open 1 Medium/fast Possibly divergent Easy

Brent Hybrid Tor2 Medium Always (for Moderate Robust

2 guesses)
Mller Polynomials 2 Medium/fast Possibly divergent Moderate
Bairstow Polynomials 2 Fast Possibly divergent Moderate

223

224

EPILOGUE: PART TWO

PT2.5

PT2.6

Open techniques differ from bracketing methods in that they use information at a single
point (or two values that need not bracket the root to extrapolate to a new root estimate). This
property is a double-edged sword. Although it leads to quicker convergence, it also allows the
possibility that the solution may diverge. In general, the convergence of open techniques is
partially dependent on the quality of the initial guess and the nature of the function. The
closer the guess is to the true root, the more likely the methods will converge.

Of the open techniques, the standard Newton-Raphson method is often used because of
its property of quadratic convergence. However, its major shortcoming is that it requires the
derivative of the function be obtained analytically. For some functions this is impractical. In
these cases, the secant method, which employs a finite-difference representation of the deriv-
ative, provides a viable alternative. Because of the finite-difference approximation, the rate of
convergence of the secant method is initially slower than for the Newton-Raphson method.
However, as the root estimate is refined, the difference approximation becomes a better rep-
resentation of the true derivative, and convergence accelerates rapidly. The modified New-
ton-Raphson technique can be used to attain rapid convergence for multiple roots. However,
this technique requires an analytical expression for both the first and second derivative.

Of particular interest are hybrid methods that combine the reliability of bracketing
with the speed of open methods. Brent’s method does this by combining bisection with sev-
eral open methods. All the methods are easy-to-moderate to program on computers and re-
quire minimal time to determine a single root. On this basis, you might conclude that sim-
ple methods such as bisection would be good enough for practical purposes. This would be
true if you were exclusively interested in determining the root of an equation once. How-
ever, there are many cases in engineering where numerous root locations are required and
where speed becomes important. For these cases, slow methods are very time-consuming
and, hence, costly. On the other hand, the fast open methods may diverge, and the accom-
panying delays can also be costly. Some computer algorithms attempt to capitalize on the
strong points of both classes of techniques by initially employing a bracketing method to
approach the root, then switching to an open method to rapidly refine the estimate. Whether
a single approach or a combination is used, the trade-offs between convergence and speed
are at the heart of the choice of a root-location technique.

IMPORTANT RELATIONSHIPS AND FORMULAS

Table PT2.4 summarizes important information that was presented in Part Two. This table
can be consulted to quickly access important relationships and formulas.

ADVANCED METHODS AND ADDITIONAL REFERENCES

The methods in this text have focused on determining a single real root of an algebraic or
transcendental equation based on foreknowledge of its approximate location. In addition,
we have also described methods expressly designed to determine both the real and complex
roots of polynomials. Additional references on the subject are Ralston and Rabinowitz
(1978) and Carnahan, Luther, and Wilkes (1969).

In addition to Muller’s and Bairstow’s methods, several techniques are available to
determine all the roots of polynomials. In particular, the quotient difference (QD) algo-
rithm (Henrici, 1964, and Gerald and Wheatley, 1989) determines all roots without initial
guesses. Ralston and Rabinowitz (1978) and Carnahan, Luther, and Wilkes (1969) contain

PT2.6 ADVANCED METHODS AND ADDITIONAL REFERENCES

225

TABLE PT2.4 Summary of important information presented in Part Two.

Graphical Errors and
Method Formulation Interpretation Stopping Criteria
Bracketing methods:
Bisection X, = Nt X fx) Stopping criterion:
2 | Root | ’
L XY — xP o
If f(x)f(x) < O, x,= x; X L Xy X T 100% = e
fix)f(x) > 0, x; = x; @
L/2
L/4
@
f(x)

False position

Newton-Raphson

Secant

_ Fix) (s — x,)

f(X/) - f(Xu)

If fix)f(x) <O, x, = x
fix)f(x) > 0, x = x;

Xr = Xy

B _ f(X,')
Xit1 = Xi ' (x)
Xt =X ™ flxi) — f(x)

f(x)

f(x)

Stopping criterion:

Id
X — x?

o [100% = &,

Stopping criterion:

Xi+1 — Xi

100% = €

Xi+1

Error: Ej 1y = O(E,-z)

Stopping criterion:

Xi+1 — Xi

100% < €

Xi+1

discussions of this method as well as of other techniques for locating roots of polynomials.
As discussed in the text, the Jenkins-Traub and Laguerre’s methods are widely employed.

In summary, the foregoing is intended to provide you with avenues for deeper explo-
ration of the subject. Additionally, all the above references provide descriptions of the basic
techniques covered in Part Two. We urge you to consult these alternative sources to

broaden your understanding of numerical methods for root location.*

Books are referenced only by author here, a complete bibliography will be found at the back of this text.

=

PART THREE

LINEAR ALGEBRAIC
EQUATIONS

PT3.1

MOTIVATION
In Part Two, we determined the value x that satisfied a single equation, f(x) = 0. Now, we
deal with the case of determining the values X3, Xy, . . . , X, that simultaneously satisfy a set
of equations

fi(X1, X2, ..., Xn) =0

f2(X1a X27 seey Xn) - 0

fn(xl, XZ’ sy Xn) == O

Such systems can be either linear or nonlinear. In Part Three, we deal with linear algebraic
equations that are of the general form

a11X1 + a1oXg + -+ - + amXn = by

Ap1X1 + ApoXg + - -+ + AmXy = by
(PT3.1)

an1X1 + @n2X2 + - - - + @nnXn = by

where the a’s are constant coefficients, the b’s are constants, and n is the number of equa-
tions. All other equations are nonlinear. Nonlinear systems were discussed in Chap. 6 and
will be covered briefly again in Chap. 9.

PT3.1.1 Noncomputer Methods for Solving Systems of Equations

For small numbers of equations (n < 3), linear (and sometimes nonlinear) equations can
be solved readily by simple techniques. Some of these methods will be reviewed at the
beginning of Chap. 9. However, for four or more equations, solutions become arduous and
computers must be utilized. Historically, the inability to solve all but the smallest sets
of equations by hand has limited the scope of problems addressed in many engineering
applications.

Before computers, techniques to solve linear algebraic equations were time-consuming
and awkward. These approaches placed a constraint on creativity because the methods were
often difficult to implement and understand. Consequently, the techniques were sometimes
overemphasized at the expense of other aspects of the problem-solving process such as for-
mulation and interpretation (recall Fig. PT1.1 and accompanying discussion).

227

228

LINEAR ALGEBRAIC EQUATIONS

The advent of easily accessible computers makes it possible and practical for you to
solve large sets of simultaneous linear algebraic equations. Thus, you can approach more
complex and realistic examples and problems. Furthermore, you will have more time to
test your creative skills because you will be able to place more emphasis on problem for-
mulation and solution interpretation.

PT3.1.2 Linear Algebraic Equations and Engineering Practice

Many of the fundamental equations of engineering are based on conservation laws (recall
Table 1.1). Some familiar quantities that conform to such laws are mass, energy, and mo-
mentum. In mathematical terms, these principles lead to balance or continuity equations
that relate system behavior as represented by the levels or response of the quantity being
modeled to the properties or characteristics of the system and the external stimuli or forc-
ing functions acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. PT3.1a). For this case, the quantity being modeled is
the mass of the chemical in each reactor. The system properties are the reaction character-
istics of the chemical and the reactors’ sizes and flow rates. The forcing functions are the
feed rates of the chemical into the system.

In Part Two, you saw how single-component systems result in a single equation that can
be solved using root-location techniques. Multicomponent systems result in a coupled set of
mathematical equations that must be solved simultaneously. The equations are coupled

FIGURE PT3.1

Two types of systems that can be modeled using linear algebraic equations: (a) lumped
variable system that involves coupled finite components and (b} distributed variable system that
involves a continuum.

wd

Feed —— Xy 4— - — X 4> X =X g A—> 0 — Xy 47—
1 1 1

PT3.2 MATHEMATICAL BACKGROUND 229

PT3.2

because the individual parts of the system are influenced by other parts. For example, in
Fig. PT3.1a, reactor 4 receives chemical inputs from reactors 2 and 3. Consequently, its
response is dependent on the quantity of chemical in these other reactors.

When these dependencies are expressed mathematically, the resulting equations are
often of the linear algebraic form of Eq. (PT3.1). The x’s are usually measures of the mag-
nitudes of the responses of the individual components. Using Fig. PT3.1a as an example,
X1 might quantify the amount of mass in the first reactor, x, might quantify the amount in
the second, and so forth. The a’s typically represent the properties and characteristics that
bear on the interactions between components. For instance, the a’s for Fig. PT3.1a might
be reflective of the flow rates of mass between the reactors. Finally, the b’s usually repre-
sent the forcing functions acting on the system, such as the feed rate in Fig. PT3.1a. The
applications in Chap. 12 provide other examples of such equations derived from engineer-
ing practice.

Multicomponent problems of the above types arise from both lumped (macro-) or
distributed (micro-) variable mathematical models (Fig. PT3.1). Lumped variable prob-
lems involve coupled finite components. Examples include trusses (Sec. 12.2), reactors
(Fig. PT3.1a and Sec. 12.1), and electric circuits (Sec. 12.3). These types of problems use
models that provide little or no spatial detail.

Conversely, distributed variable problems attempt to describe spatial detail of systems
on a continuous or semicontinuous basis. The distribution of chemicals along the length of
an elongated, rectangular reactor (Fig. PT3.1b) is an example of a continuous variable
model. Differential equations derived from the conservation laws specify the distribution
of the dependent variable for such systems. These differential equations can be solved nu-
merically by converting them to an equivalent system of simultaneous algebraic equations.
The solution of such sets of equations represents a major engineering application area for
the methods in the following chapters. These equations are coupled because the variables
at one location are dependent on the variables in adjoining regions. For example, the con-
centration at the middle of the reactor is a function of the concentration in adjoining re-
gions. Similar examples could be developed for the spatial distribution of temperature or
momentum. We will address such problems when we discuss differential equations later in
the book.

Aside from physical systems, simultaneous linear algebraic equations also arise in a
variety of mathematical problem contexts. These result when mathematical functions are
required to satisfy several conditions simultaneously. Each condition results in an equation
that contains known coefficients and unknown variables. The techniques discussed in this
part can be used to solve for the unknowns when the equations are linear and algebraic.
Some widely used numerical techniques that employ simultaneous equations are regres-
sion analysis (Chap. 17) and spline interpolation (Chap. 18).

MATHEMATICAL BACKGROUND

All parts of this book require some mathematical background. For Part Three, matrix nota-
tion and algebra are useful because they provide a concise way to represent and manipulate
linear algebraic equations. If you are already familiar with matrices, feel free to skip to
Sec. PT3.3. For those who are unfamiliar or require a review, the following material pro-
vides a brief introduction to the subject.

230 LINEAR ALGEBRAIC EQUATIONS

Column 3
ai; a2 a3 ... am
a1 axp a3 ... am Row 2
[A]l =
an1 an2 an3 ... anm

FIGURE PT3.2
A matrix.

PT3.2.1 Matrix Notation

A matrix consists of a rectangular array of elements represented by a single symbol. As
depicted in Fig. PT3.2, [A] is the shorthand notation for the matrix and a;; designates an in-
dividual element of the matrix.

Ahorizontal set of elements is called a row and a vertical set is called a column. The first
subscript i always designates the number of the row in which the element lies. The second
subscript j designates the column. For example, element a,3 is in row 2 and column 3.

The matrix in Fig. PT3.2 has n rows and m columns and is said to have a dimension of
n by m (or n x m). It is referred to as an n by m matrix.

Matrices with row dimension n = 1, such as

[B]=1[b1 bz --- bp]

are called row vectors. Note that for simplicity, the first subscript of each element is
dropped. Also, it should be mentioned that there are times when it is desirable to employ a
special shorthand notation to distinguish a row matrix from other types of matrices. One
way to accomplish this is to employ special open-topped brackets, as in |B].

Matrices with column dimension m = 1, such as

C1
C2

[C]=

| Cn

are referred to as column vectors. For simplicity, the second subscript is dropped. As with
the row vector, there are occasions when it is desirable to employ a special shorthand no-
tation to distinguish a column matrix from other types of matrices. One way to accomplish
this is to employ special brackets, as in {C}.

PT3.2 MATHEMATICAL BACKGROUND

231

Matrices where n = m are called square matrices. For example, a 4 by 4 matrix is

djn a3

dy1 dxp Az

[A] =

az dsz

as

asy

as as3

ais
ax
azg
Qg

The diagonal consisting of the elements a1, a2, ass, and ay4 is termed the principal or main

diagonal of the matrix.

Square matrices are particularly important when solving sets of simultaneous linear
equations. For such systems, the number of equations (corresponding to rows) and the
number of unknowns (corresponding to columns) must be equal for a unique solution to be
possible. Consequently, square matrices of coefficients are encountered when dealing with
such systems. Some special types of square matrices are described in Box PT3.1.

Box PT3.1

There are a number of special forms of square matrices that are im-
portant and should be noted:

A symmetric matrix is one where a;; = a;; for all i’s and j’s. For
example,

5 1 2
[Al=|1 3 7
2 7 8

is a 3 by 3 symmetric matrix.
A diagonal matrix is a square matrix where all elements off the
main diagonal are equal to zero, as in

ain
=
dsz
daa

Note that where large blocks of elements are zero, they are left
blank.

An identity matrix is a diagonal matrix where all elements on
the main diagonal are equal to 1, as in

1

[11=

Special Types of Square Matrices

The symbol [I] is used to denote the identity matrix. The identity
matrix has properties similar to unity.

An upper triangular matrix is one where all the elements below
the main diagonal are zero, as in

d;n Az Az Aus

dp Az aAx

[A] =

azs
Ay

as3

A lower triangular matrix is one where all elements above the
main diagonal are zero, as in
ay
A aAx

ds1

[Al =

dsz
a3

az2

da1 Aa daa

A banded matrix has all elements equal to zero, with the excep-
tion of a band centered on the main diagonal:

d;n A

d1 Axp Az

[Al =

az4
Ay

as3
a3

as2

The above matrix has a bandwidth of 3 and is given a special
name—the tridiagonal matrix.

232

LINEAR ALGEBRAIC EQUATIONS

PT3.2.2 Matrix Operating Rules

Now that we have specified what we mean by a matrix, we can define some operating rules
that govern its use. Two n by m matrices are equal if, and only if, every element in the first
is equal to every element in the second, that is, [A] = [B] if a;; = b;; for all i and j.

Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding
terms in each matrix. The elements of the resulting matrix [C] are computed,

Cij = ajj + byjj
fori=1,2,...,nandj=1, 2,..., m. Similarly, the subtraction of two matrices, say,
[E] minus [F], is obtained by subtracting corresponding terms, as in

dij = &ij — fij

fori=1,2,...,nandj=1, 2, ..., m. It follows directly from the above definitions
that addition and subtraction can be performed only between matrices having the same
dimensions.

Both addition and subtraction are commutative:

[A] +[B] = [B] + [A]
Addition and subtraction are also associative, that is,
([A] +[B] + [C] = [A]l + ([B] + [C]D

The multiplication of a matrix [A] by a scalar g is obtained by multiplying every element
of [A] by g, asin

gaiz Qa2 --- Qaim

gap1 Qgaz --- Qaom
[D] = g[A] =

ganr Qan2 -+ Qamm

The product of two matrices is represented as [C] = [A][B], where the elements of [C] are
defined as (see Box PT3.2 for a simple way to conceptualize matrix multiplication)

n
Cij = Z aikby; (PT3.2)
k=1

where n = the column dimension of [A] and the row dimension of [B]. That is, the c;; ele-
ment is obtained by adding the product of individual elements from the ith row of the first
matrix, in this case [A], by the jth column of the second matrix [B].

According to this definition, multiplication of two matrices can be performed only if
the first matrix has as many columns as the number of rows in the second matrix. Thus, if
[A] is an n by m matrix, [B] could be an m by | matrix. For this case, the resulting [C] ma-
trix would have the dimension of n by I. However, if [B] were an | by m matrix, the multi-
plication could not be performed. Figure PT3.3 provides an easy way to check whether two
matrices can be multiplied.

PT3.2 MATHEMATICAL BACKGROUND

233

Box PT3.2 A Simple Method for Multiplying Two Matrices

Although Eq. (PT3.2) is well suited for implementation on a com-
puter, it is not the simplest means for visualizing the mechanics of
multiplying two matrices. What follows gives more tangible ex-
pression to the operation.

Suppose that we want to multiply [X] by [Y] to yield [Z],

[2] = [XI[Y] = F tls} [? ‘2’}

0 4

A simple way to visualize the computation of [Z] is to raise [Y],
asin

t
[i’ 2} Y]

31
[X]—>|:8 6:||: ? }—[z]
0 4

Now the answer [Z] can be computed in the space vacated by [Y].
This format has utility because it aligns the appropriate rows and
columns that are to be multiplied. For example, according to
Eq. (PT3.2), the element zy; is obtained by multiplying the first row
of [X] by the first column of [Y]. This amounts to adding the prod-
uct of x41 and yj; to the product of X3, and y,1, as in

h[f)

3 17> [3x5+1x7=22
0 4

Thus, z15 is equal to 22. Element z,; can be computed in a similar
fashion, as in

59

7 2

!

31 22
|:8 6:|—>|:8><5—|—6><7:82 :|
0 4

The computation can be continued in this way, following the
alignment of the rows and columns, to yield the result

22 29
[Z]:|:82 84:|
28 8

Note how this simple method makes it clear why it is impossi-
ble to multiply two matrices if the number of columns of the first
matrix does not equal the number of rows in the second matrix.
Also, note how it demonstrates that the order of multiplication mat-
ters (that is, matrix multiplication is not commutative).

FIGURE PT3.3

[Aln x m

are equal;

multiplication

is possible

[B]mxl =

Interior dimensions

[C]nxl

Y

Exterior dimensions define

the dimensions of the result

234

LINEAR ALGEBRAIC EQUATIONS

If the dimensions of the matrices are suitable, matrix multiplication is associative,
([AI[BDIC] = [AIBIICD
and distributive,
[AI([B] + [CD = [A][B] + [A]IC]
or
([A]+ [BDIC] = [A][C] + [BI]IC]
However, multiplication is not generally commutative:

[Al[B] # [BI[A]

That is, the order of multiplication is important.

Figure PT3.4 shows pseudocode to multiply an n by m matrix [A], by an m by | matrix
[B], and store the result in an n by I matrix [C]. Notice that, instead of the inner product
being directly accumulated in [C], it is collected in a temporary variable, sum. This is
done for two reasons. First, it is a bit more efficient, because the computer need determine
the location of ¢; j only n x | times rather than n x | x m times. Second, the precision of
the multiplication can be greatly improved by declaring sum as a double precision variable
(recall the discussion of inner products in Sec. 3.4.2).

Although multiplication is possible, matrix division is not a defined operation. How-
ever, if a matrix [A] is square and nonsingular, there is another matrix [A]~%, called the
inverse of [A], for which

[AI[A] ™ = [A]M[A] =[I] (PT3.3)

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense that
a number divided by itself is equal to 1. That is, multiplication of a matrix by its inverse
leads to the identity matrix (recall Box PT3.1).

The inverse of a two-dimensional square matrix can be represented simply by

1 _
A= ———— | 2 % (PT3.4)
aidy — apdy | —az an

FIGURE PT3.4

SUBROUTINE Mmult (a, b, ¢, m, n, 1)
DOFOR i =1, n
DOFOR j =1, 1
sum = 0.
DOFOR k=1, m
sum = sum + a(i,k) - b(k,j)
END DO
c(i,j) = sum
END DO
END DO

PT3.2 MATHEMATICAL BACKGROUND 235

Similar formulas for higher-dimensional matrices are much more involved. Sections in
Chaps. 10 and 11 will be devoted to techniques for using numerical methods and the com-
puter to calculate the inverse for such systems.

Two other matrix manipulations that will have utility in our discussion are the trans-
pose and the trace of a matrix. The transpose of a matrix involves transforming its rows into
columns and its columns into rows. For example, for the 4 x 4 matrix,

djx Az a3z adus
a: a: a: a.
[A] = 21 dxp dxz Ax
a3 a2 adzz Az
dq1 Qg2 43 Au

the transpose, designated [A]", is defined as

a1 A Az aa
[A]T = a2 axp azx ap
a3 A3 asz ass
djg QA4 QAz4 Asyg
In other words, the element a;; of the transpose is equal to the a;; element of the original
matrix.

The transpose has a variety of functions in matrix algebra. One simple advantage is
that it allows a column vector to be written as a row. For example, if

C1
C2

{Cl= o

Cq
then

{CT=lc1 ¢ C3 Ca

where the superscript T designates the transpose. For example, this can save space when
writing a column vector in a manuscript. In addition, the transpose has numerous mathe-
matical applications.

The trace of a matrix is the sum of the elements on its principal diagonal. It is desig-
nated as tr [A] and is computed as

tr[A] = Xn: aji
i=1

The trace will be used in our discussion of eigenvalues in Chap. 27.

The final matrix manipulation that will have utility in our discussion is augmentation.
A matrix is augmented by the addition of a column (or columns) to the original matrix. For
example, suppose we have a matrix of coefficients:

a;; 42 a3
[Al=] axn ax ax
dz1 a3z as3

236

LINEAR ALGEBRAIC EQUATIONS

We might wish to augment this matrix [A] with an identity matrix (recall Box PT3.1) to
yield a 3-by-6-dimensional matrix:

ap ap as ;1 00
[A] = | dp1 dAp2 a3 01 0
ag ap ap 0 0 1

Such an expression has utility when we must perform a set of identical operations on two
matrices. Thus, we can perform the operations on the single augmented matrix rather than
on the two individual matrices.

PT3.2.3 Representing Linear Algebraic Equations in Matrix Form

It should be clear that matrices provide a concise notation for representing simultaneous
linear equations. For example, Eq. (PT3.1) can be expressed as

[Al{X} = {B} (PT3.5)

where [A] is the n by n square matrix of coefficients,

(a1 aw -+ an
dy1 A2 -+ apn
[A]l =
Lan1 @p2 -+ app

{B} is the n by 1 column vector of constants,

{B}f =lby by -+ byl
and {X} is the n by 1 column vector of unknowns:
XY=l X -+ Xl

Recall the definition of matrix multiplication [Eq. (PT3.2) or Box PT3.2] to convince your-
self that Egs. (PT3.1) and (PT3.5) are equivalent. Also, realize that Eq. (PT3.5) is a valid
matrix multiplication because the number of columns, n, of the first matrix [A] is equal to
the number of rows, n, of the second matrix {X}.

This part of the book is devoted to solving Eq. (PT3.5) for {X}. A formal way to ob-
tain a solution using matrix algebra is to multiply each side of the equation by the inverse
of [A] to yield

[AI[Al{X} = [A] (B}
Because [A]~[A] equals the identity matrix, the equation becomes
{X} =[A]"!{B} (PT3.6)

Therefore, the equation has been solved for {X}. This is another example of how the inverse
plays a role in matrix algebra that is similar to division. It should be noted that this is not a

PT3.3 ORIENTATION 237

PT3.3

very efficient way to solve a system of equations. Thus, other approaches are employed in
numerical algorithms. However, as discussed in Chap. 10, the matrix inverse itself has great
value in the engineering analyses of such systems.

Finally, we will sometimes find it useful to augment [A] with {B}. For example, if
n = 3, this results in a 3-by-4-dimensional matrix:

ann a; a3 | b
[Al=]axn ax axs | b (PT3.7)
az asxp as i b3

Expressing the equations in this form is useful because several of the techniques for
solving linear systems perform identical operations on a row of coefficients and the corre-
sponding right-hand-side constant. As expressed in Eq. (PT3.7), we can perform the ma-
nipulation once on an individual row of the augmented matrix rather than separately on the
coefficient matrix and the right-hand-side vector.

ORIENTATION

Before proceeding to the numerical methods, some further orientation might be helpful.
The following is intended as an overview of the material discussed in Part Three. In addi-
tion, we have formulated some objectives to help focus your efforts when studying the
material.

PT3.3.1 Scope and Preview

Figure PT3.5 provides an overview for Part Three. Chapter 9 is devoted to the most fun-
damental technique for solving linear algebraic systems: Gauss elimination. Before
launching into a detailed discussion of this technique, a preliminary section deals with sim-
ple methods for solving small systems. These approaches are presented to provide you with
visual insight and because one of the methods—the elimination of unknowns—represents
the basis for Gauss elimination.

After the preliminary material, “naive” Gauss elimination is discussed. We start with
this “stripped-down” version because it allows the fundamental technique to be elaborated
on without complicating details. Then, in subsequent sections, we discuss potential prob-
lems of the naive approach and present a number of modifications to minimize and cir-
cumvent these problems. The focus of this discussion will be the process of switching
rows, or partial pivoting.

Chapter 10 begins by illustrating how Gauss elimination can be formulated as an LU
decomposition solution. Such solution techniques are valuable for cases where many right-
hand-side vectors need to be evaluated. It is shown how this attribute allows efficient
calculation of the matrix inverse, which has tremendous utility in engineering practice.
Finally, the chapter ends with a discussion of matrix condition. The condition number is
introduced as a measure of the loss of significant digits of accuracy that can result when
solving ill-conditioned matrices.

The beginning of Chap. 11 focuses on special types of systems of equations that have
broad engineering application. In particular, efficient techniques for solving tridiagonal

238

LINEAR ALGEBRAIC EQUATIONS

PT 3.6
Advanced
methods

PT 3.5
Important
formulas

PT 3.4
Trade-offs

12.4
Mechanical

CHAPTER 12

Engineering
Case Studies

Electrical
engineering

12.2
Civil
engineering

1221
Chemical
engineering

FIGURE PT3.5

PT 3.2
Mathematical
background

PT 3.1
Motivation

PT 3.3
Orientation

9.2
Naive Gauss
elimination

9.1
Small
systems

PART 3

Linear Algebraic
Equations

9.4
Remedies

CHAPTER 9

9.5
Complex

Gauss

Elimination systems

9.6
Nonlinear
systems

9.7
Gauss-Jordan

decomposition

CHAPTER 10

LU Decomposition
and
Matrix Inversion

CHAPTER 11

10.3
System
condition

Special Matrices
and Gauss-Seidel

11.1
Special

matrices

11.2

Gauss-
Seidel

Schematic of the organization of the material in Part Three: Systems of Linear Algebraic Equations.

PT3.3 ORIENTATION 239

systems are presented. Then, the remainder of the chapter focuses on an alternative to
elimination methods called the Gauss-Seidel method. This technique is similar in spirit to
the approximate methods for roots of equations that were discussed in Chap. 6. That is, the
technique involves guessing a solution and then iterating to obtain a refined estimate. The
chapter ends with information related to solving linear algebraic equations with software
packages.

Chapter 12 demonstrates how the methods can actually be applied for problem solving.
As with other parts of the book, applications are drawn from all fields of engineering.

Finally, an epilogue is included at the end of Part Three. This review includes
discussion of trade-offs that are relevant to implementation of the methods in engineering
practice. This section also summarizes the important formulas and advanced methods re-
lated to linear algebraic equations. As such, it can be used before exams or as a refresher
after you have graduated and must return to linear algebraic equations as a professional.

PT3.3.2 Goals and Obijectives

Study Obijectives. After completing Part Three, you should be able to solve problems
involving linear algebraic equations and appreciate the application of these equations in
many fields of engineering. You should strive to master several techniques and assess their
reliability. You should understand the trade-offs involved in selecting the “best” method
(or methods) for any particular problem. In addition to these general objectives, the spe-
cific concepts listed in Table PT3.1 should be assimilated and mastered.

Computer Objectives. Your most fundamental computer objectives are to be able to
solve a system of linear algebraic equations and to evaluate the matrix inverse. You will

TABLE PT3.1 Specific study objectives for Part Three.

1. Undersfand the graphical interpretation of ill-conditioned systems and how it relates to the determinant.
. Be familiar with terminology: forward elimination, back substitution, pivot equation, and pivot
coefficient.
. Understand the problems of division by zero, round-off error, and ill-conditioning.
. Know how to compute the determinant using Gauss elimination.
. Understand the advantages of pivoting; realize the difference between partial and complete pivoting.
. Know the fundamental difference between Gauss elimination and the Gaussjordan method and which
is more efficient.
. Recognize how Gauss elimination can be formulated as an LU decomposition.
. Know how fo incorporate pivoting and matrix inversion into an LU decomposition algorithm.
. Know how to interpret the elements of the mairix inverse in evaluating stimulus response computations in
engineering.
10. Realize how to use the inverse and mafrix norms to evaluate systfem condition.
11. Understand how banded and symmetric systems can be decomposed and solved efficiently.
12. Understand why the Gauss-Seidel method is particularly well suited for large, sparse systems of
equations.
13. Know how fo assess diagonal dominance of a system of equations and how it relates to whether the
system can be solved with the Gauss-Seidel method.
14. Understand the rationale behind relaxation; know where underrelaxation and overrelaxation are
appropriate.

OO hNw N

O 0 N\

240

LINEAR ALGEBRAIC EQUATIONS

want to have subprograms developed for LU decomposition of both full and tridiagonal
matrices. You may also want to have your own software to implement the Gauss-Seidel
method.

You should know how to use packages to solve linear algebraic equations and find the
matrix inverse. You should become familiar with how the same evaluations can be imple-
mented on popular software packages such as Excel, MATLAB, and Mathcad.

|

i

CHAPTER

9.1

Gauss Elimination

This chapter deals with simultaneous linear algebraic equations that can be represented
generally as

a11X1 + apXo + - -+ + amXy = by
Ap1X1 + AgoXg + - -+ + AXy = by
(9.1)

an1X1 + @n2X2 + - - 4+ @nnXn = bn

where the a’s are constant coefficients and the b’s are constants.

The technique described in this chapter is called Gauss elimination because it involves
combining equations to eliminate unknowns. Although it is one of the earliest methods for
solving simultaneous equations, it remains among the most important algorithms in use
today and is the basis for linear equation solving on many popular software packages.

SOLVING SMALL NUMBERS OF EQUATIONS

Before proceeding to the computer methods, we will describe several methods that are
appropriate for solving small (n < 3) sets of simultaneous equations and that do not re-
quire a computer. These are the graphical method, Cramer’s rule, and the elimination of
unknowns.

9.1.1 The Graphical Method

A graphical solution is obtainable for two equations by plotting them on Cartesian coordi-
nates with one axis corresponding to x; and the other to x,. Because we are dealing with lin-
ear systems, each equation is a straight line. This can be easily illustrated for the general
equations

apiX1 + appXy = by
an Xy + axpXy = by
241

242

GAUSS ELIMINATION

EXAMPLE 9.1

Both equations can be solved for x,:
a b
Xy = —(E)M + =
ain ain

an b,
o= (2) 2
az az

Thus, the equations are now in the form of straight lines; that is, x, = (slope) x; + inter-
cept. These lines can be graphed on Cartesian coordinates with x; as the ordinate and x; as
the abscissa. The values of x; and X at the intersection of the lines represent the solution.

The Graphical Method for Two Equations

Problem Statement. Use the graphical method to solve

3X1 + 2%, = 18
—X1 + 2%, =2

Solution. Let x; be the abscissa. Solve Eq. (E9.1.1) for x»:

3
X2=—§X1+9

which, when plotted on Fig. 9.1, is a straight line with an intercept of 9 and a slope of —3/2.

FIGURE 9.1

Graphical solufion of a set of two simultaneous linear algebraic equations. The infersection of the

lines represents the solution.

Solution: x; = 4;x, = 3

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 243

Equation (E9.1.2) can also be solved for x»:

1
x2=§x1+1

which is also plotted on Fig. 9.1. The solution is the intersection of the two lines at x; = 4
and x, = 3. This result can be checked by substituting these values into the original equa-
tions to yield

3(4) +2(3) = 18
—4) +23) =2

Thus, the results are equivalent to the right-hand sides of the original equations.

For three simultaneous equations, each equation would be represented by a plane in
a three-dimensional coordinate system. The point where the three planes intersect would
represent the solution. Beyond three equations, graphical methods break down and, conse-
quently, have little practical value for solving simultaneous equations. However, they some-
times prove useful in visualizing properties of the solutions. For example, Fig. 9.2 depicts
three cases that can pose problems when solving sets of linear equations. Figure 9.2a shows
the case where the two equations represent parallel lines. For such situations, there is no
solution because the lines never cross. Figure 9.2b depicts the case where the two lines are
coincident. For such situations there is an infinite number of solutions. Both types of
systems are said to be singular. In addition, systems that are very close to being singular
(Fig. 9.2c) can also cause problems. These systems are said to be ill-conditioned.
Graphically, this corresponds to the fact that it is difficult to identify the exact point at
which the lines intersect. 1ll-conditioned systems will also pose problems when they are
encountered during the numerical solution of linear equations. This is because they will be
extremely sensitive to round-off error (recall Sec. 4.2.3).

FIGURE 9.2

Graphical depiction of singular and ill-conditioned systems: [a) no solution, (b) infinite solutions,
and (¢} ill-conditioned system where the slopes are so close that the point of intersection is

difficult to defect visually.

X2

(b) (c)

244

GAUSS ELIMINATION

EXAMPLE 9.2

9.1.2 Determinants and Cramer’s Rule

Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly introduce the concept of the determi-
nant, which is used to implement Cramer’s rule. In addition, the determinant has relevance
to the evaluation of the ill-conditioning of a matrix.

Determinants. The determinant can be illustrated for a set of three equations:
[A{X} = {B}
where [A] is the coefficient matrix:
a;n ar ai

[Al=|an ax az
dz; a2 ass

The determinant D of this system is formed from the coefficients of the equation, as in

a;; a2 Az
D=lan ax ax 9.2)
a3 adz ass

Although the determinant D and the coefficient matrix [A] are composed of the same ele-
ments, they are completely different mathematical concepts. That is why they are distin-
guished visually by using brackets to enclose the matrix and straight lines to enclose the
determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the second-order determinant

a a
D= 11 12

a1 ax
is calculated by
D = apaz — apay (9.3)

For the third-order case [Eq. (9.2)], a single numerical value for the determinant can be
computed as

a2 Az dz1 Az a1 Ay

D=ap

—ap as (9.4)

dz2 as3 ds1 ass az as

where the 2 by 2 determinants are called minors.

Determinants

Problem Statement. Compute values for the determinants of the systems represented in
Figs. 9.1 and 9.2.

Solution. For Fig. 9.1:

' 3 2‘:3(2)—2(—1):8

D=
-1 2

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 245

EXAMPLE 9.3

For Fig. 9.2a:
-1/2 1 -1 -1
D= ~1/2 1| 2D _1<7> =0
For Fig. 9.2b:
-1/2 1 -1
D= 1 _7(2)—1(—1)_0
For Fig. 9.2c:
-1/2 1 -1 —2.3
b= —2.3/5 1‘ =7 W= 1<T) =004

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 9.2c) has a determinant that
is close to zero. These ideas will be pursued further in our subsequent discussion of ill-
conditioning (Sec. 9.3.3).

Cramer’s Rule. This rule states that each unknown in a system of linear algebraic equa-
tions may be expressed as a fraction of two determinants with denominator D and with the
numerator obtained from D by replacing the column of coefficients of the unknown in

question by the constants by, by, . . ., b,. For example, x; would be computed as
by ap as
by ax ax
b; ax as
X1=—"7— 9.5
1 D (9.5)

Cramer’s Rule
Problem Statement. Use Cramer’s rule to solve

0.3x; + 0.52x, + x3 = —0.01
0.5%; + X2 +1.9x3 = 0.67
0.1x; + 0.3x, + 0.5x3 = —0.44

Solution. The determinant D can be written as [Eq. (9.2)]

03 052 1
D=(05 1 19
0.1 03 05
The minors are [Eq. (9.3)]
1 19
Al = =1(0.5) — 1.9(0.3) = —0.07
1 ‘ 03 05 ' (0.5) 9(0.3) 0.0
05 19
Ay = ’ ' = 0.5(0.5) — 1.9(0.1) = 0.06

0.1 05

246

GAUSS ELIMINATION

05 1

As =
s ‘0.1 0.3

' =0.5(0.3) — 1(0.1) = 0.05

These can be used to evaluate the determinant, as in [Eq. (9.4)]
D = 0.3(—0.07) — 0.52(0.06) + 1(0.05) = —0.0022
Applying Eq. (9.5), the solution is

—001 052 1
067 1 19
_044 03 05| 003278
_ _ — 149
X —0.0022 —0.0022
03 —001 1
05 067 1.9
01 —044 05| 0.0649
_ _ — 295
X2 —0.0022 —0.0022
03 052 —001
05 1 067
01 03 —044| —0.04356
_ _ — 198
X3 —0.0022 —0.0022

For more than three equations, Cramer’s rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
(or by computer). Consequently, more efficient alternatives are used. Some of these alter-
natives are based on the last noncomputer solution technique covered in the next section—
the elimination of unknowns.

9.1.3 The Elimination of Unknowns

The elimination of unknowns by combining equations is an algebraic approach that can be
illustrated for a set of two equations:

aj Xy +apx, =b (9.6)

QX1 + AxnXy =Dy 9.7
The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result is a single equation
that can be solved for the remaining unknown. This value can then be substituted into
either of the original equations to compute the other variable.

For example, Eg. (9.6) might be multiplied by a,; and Eq. (9.7) by ay; to give

a11821X1 + apan Xz = bian (9.8)

azai Xy + axpan Xy = bayp 9.9)

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 247

EXAMPLE 9.4

Subtracting Eq. (9.8) from Eq. (9.9) will, therefore, eliminate the x; term from the equa-
tions to yield

aaii X — andx Xy = bpag — biay

which can be solved for

ai1hy — axhs

X = (9.10)
aiidze — aedy
Equation (9.10) can then be substituted into Eq. (9.6), which can be solved for
b; —agpb
_ aeby —aghs (9.11)

== e
ajjdy — ajpany

Notice that Egs. (9.10) and (9.11) follow directly from Cramer’s rule, which states

by ap

Y — by ax _ _biazn —aph,
a;n an aiidz — azdy
d axp
ai;r by

Yy — ay by _ 8uby —biay
a;n an aiidz — azdy
d axp

Elimination of Unknowns

Problem Statement. Use the elimination of unknowns to solve (recall Example 9.1)

33Xy + 2%, =18
—X1+ 2%, =2
Solution. Using Egs. (9.11) and (9.10),
218 -2(2)
T30 —2(-1)
3@ - (-D18
T 312)—-2(-1)

which is consistent with our graphical solution (Fig. 9.1).

The elimination of unknowns can be extended to systems with more than two or three
equations. However, the numerous calculations that are required for larger systems make
the method extremely tedious to implement by hand. However, as described in the next
section, the technique can be formalized and readily programmed for the computer.

248

GAUSS ELIMINATION

9.2

NAIVE GAUSS ELIMINATION

In the previous section, the elimination of unknowns was used to solve a pair of simulta-
neous equations. The procedure consisted of two steps:

1. The equations were manipulated to eliminate one of the unknowns from the equations.
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted
into one of the original equations to solve for the remaining unknown.

This basic approach can be extended to large sets of equations by developing a sys-
tematic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimi-
nation is the most basic of these schemes.

This section includes the systematic techniques for forward elimination and back substi-
tution that comprise Gauss elimination. Although these techniques are ideally suited for
implementation on computers, some modifications will be required to obtain a reliable algo-
rithm. In particular, the computer program must avoid division by zero. The following method
is called ““naive” Gauss elimination because it does not avoid this problem. Subsequent sec-
tions will deal with the additional features required for an effective computer program.

The approach is designed to solve a general set of n equations:

a11X1 + A1oX2 + A13X3 + - - - + @1 Xn = by (9.12a)
Ap1X1 + A22X2 + A23X3 + - - - + AmXy = by (9.12b)
an1X1 + @n2X2 + anzXz + - - - + a&unXn = by (9.12c)

As was the case with the solution of two equations, the technique for n equations consists
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig. 9.3). The initial step will be to eliminate the
first unknown, x;, from the second through the nth equations. To do this, multiply
Eq. (9.12a) by ay;/a;; to give

ay a1 a1
A Xy + —apXo + -+ + —aXn = —by (9.13)
aig aig aig
Now, this equation can be subtracted from Eqg. (9.12b) to give
ans az az1
(azz - —312>X2 +---+ (aZn - _aln)xn =bh, — —b
ail ail an
or
8hyXo + -+ By ¥n = b}

where the prime indicates that the elements have been changed from their original values.
The procedure is then repeated for the remaining equations. For instance, Eq. (9.12a)
can be multiplied by as;/a;; and the result subtracted from the third equation. Repeating

9.2 NAIVE GAUSS ELIMINATION 249

FIGURE 9.3

The two phases of Gauss elimi-
nation: forward elimination and
back substitution. The primes
indicate the number of times
that the coefficients and
constants have been modified.

[ann a2 ais b
a1 az2 Q23 b?
[@31 032 Q433 by |
Forward
Y I elimination
[a11 a2 a3 bl
a2 a3 b>
L a33 b3 |
x3 = b3/as3
b ol Back
x = (D2 — a23x3)/a22 substitution
x1 = by — arox2 — ar3xs)/an |

the procedure for the remaining equations results in the following modified system:

a11X1 + 12Xz + A13X3 + - - + A1nXn = by (9.149)
Ay, X2 + ApgX3 + -+ + 85Xy = D) (9.14b)
agyoX2 + agzXs + - -+ + ag,Xn = by (9.14c)
an,X2 + angXa + - - + ap,Xn = by, (9.14d)

For the foregoing steps, Eq. (9.12a) is called the pivot equation and ay; is called the pivot
coefficient or element. Note that the process of multiplying the first row by ay;/ay; is
equivalent to dividing it by a;; and multiplying it by a,1. Sometimes the division operation
is referred to as normalization. We make this distinction because a zero pivot element can
interfere with normalization by causing a division by zero. We will return to this important
issue after we complete our description of naive Gauss elimination.

Now repeat the above to eliminate the second unknown from Eq. (9.14c) through
(9.14d). To do this multiply Eq. (9.14b) by a3, /a5, and subtract the result from Eq. (9.14c).
Perform a similar elimination for the remaining equations to yield

a11X1 + @12X2 + @13X3 + - - - + &mXn = b1
89Xz + 83X + -+ + @ Xn = by
s + -+ gy = by

ap3Xs + -+ + 8 X = by

where the double prime indicates that the elements have been modified twice.

250 GAUSS ELIMINATION
The procedure can be continued using the remaining pivot equations. The final ma-
nipulation in the sequence is to use the (n — 1)th equation to eliminate the x,_; term from
the nth equation. At this point, the system will have been transformed to an upper triangu-
lar system (recall Box PT3.1):
a11X1 + a1pX2 + 13Xz + - + A Xn = by (9.15a)
A5yX2 + ApgX3 + - - - + Ay Xn = by (9.15b)
ag3X3 + -+ -+ ag,Xn = bj (9.15¢)
alhbx, = b"b (9.15d)
Pseudocode to implement forward elimination is presented in Fig. 9.4a. Notice that
three nested loops provide a concise representation of the process. The outer loop moves
down the matrix from one pivot row to the next. The middle loop moves below the pivot row
to each of the subsequent rows where elimination is to take place. Finally, the innermost loop
progresses across the columns to eliminate or transform the elements of a particular row.
Back Substitution. Equation (9.15d) can now be solved for x,:
br(]n—l)
Xn = (9.16)
T
This result can be back-substituted into the (n — I)th equation to solve for x,_1. The procedure,
which is repeated to evaluate the remaining x’s, can be represented by the following formula:
n
b0 — 3 al b,
j]
j=i+1 .
Xi = = fori=n-1n-2,...,1 9.17)
&
FIGURE 9.4 (@ DOFOR k = 1, n—1
Pseudocode to perform (a) for- DOFOR 7 = k + 1. n
wir?tetl'iminoﬁon and (b} back factor = aix / aux
substibion. DOFOR j = k + 1 to n
aj,; = ajj — factor - a;
END DO
b; = b; — factor - by
END DO
END DO
(b) Xp = by / ann
DOFOR 7 =n—1, 1, =1
sum = bj

DOFOR j =1+ 1, n
sum = sum — aij,j - Xj
END DO
Xi = sum / ai,i

END DO

9.2 NAIVE GAUSS ELIMINATION 251

EXAMPLE 9.5

Pseudocode to implement Egs. (9.16) and (9.17) is presented in Fig. 9.4b. Notice the
similarity between this pseudocode and that in Fig. PT3.4 for matrix multiplication. As
with Fig. PT3.4, a temporary variable, sum, is used to accumulate the summation from
Eq. (9.17). This results in a somewhat faster execution time than if the summation were ac-
cumulated in b;. More importantly, it allows efficient improvement in precision if the vari-
able, sum, is declared in double precision.

Naive Gauss Elimination

Problem Statement. Use Gauss elimination to solve

33Xy — 0.1x, — 0.2x3 = 7.85 (E9.5.1)
0.1x1 + 7%, — 0.3x3 = —19.3 (E9.5.2)
0.3x; — 0.2X, + 10x3 = 71.4 (E9.5.3)

Carry six significant figures during the computation.

Solution. The first part of the procedure is forward elimination. Multiply Eq. (E9.5.1) by
(0.1)/3 and subtract the result from Eq. (E9.5.2) to give

7.00333x, — 0.293333x3 = —19.5617

Then multiply Eq. (E9.5.1) by (0.3)/3 and subtract it from Eq. (E9.5.3) to eliminate x;.
After these operations, the set of equations is

3% —0.1%, —0.2x; = 7.85 (E9.5.4)
7.00333%, — 0.293333x3 = —19.5617 (E9.5.5)
—0.190000x, + 10.0200x3 = 70.6150 (E9.5.6)

To complete the forward elimination, x, must be removed from Eq. (E9.5.6). To accom-
plish this, multiply Eq. (E9.5.5) by —0.190000,/7.00333 and subtract the result from
Eq. (E9.5.6). This eliminates x, from the third equation and reduces the system to an upper
triangular form, as in

3X1 —0.1x5 —0.2x3 =7.85 (E9.5.7)
7.00333%x, — 0.293333x3 = —19.5617 (E9.5.8)
10.0120x3 = 70.0843 (E9.5.9)

We can now solve these equations by back substitution. First, Eq. (E9.5.9) can be solved
for

_70.0843
~10.0120

This result can be back-substituted into Eq. (E9.5.8):
7.00333x, — 0.293333(7.0000) = —19.5617
which can be solved for

19,5617 + 0.293333(7.0000)
Xo = 50953 — —2.50000 (E9.5.11)

X3 = 7.0000 (E9.5.10)

252

GAUSS ELIMINATION

Finally, Egs. (E9.5.10) and (E9.5.11) can be substituted into Eq. (E9.5.4):
3x; — 0.1(—2.50000) — 0.2(7.0000) = 7.85
which can be solved for

_ 7.85+0.1(—2.50000) + 0.2(7.0000)
N 3

X1 = 3.00000

The results are identical to the exact solution of x; = 3, X, = —2.5, and x3 = 7. This can be
verified by substituting the results into the original equation set

3(3) —0.1(—2.5) —0.2(7) = 7.85

0.1(3) +7(—2.5) — 0.3(7) = —19.3

0.3(3) — 0.2(—2.5) +10(7) =71.4

9.2.1 Operation Counting

The execution time of Gauss elimination depends on the amount of floating-point operations
(or flops) involved in the algorithm. On modern computers using math coprocessors, the time
consumed to perform addition/subtraction and multiplication/division is about the same.
Therefore, totaling up these operations provides insight into which parts of the algorithm are
most time consuming and how computation time increases as the system gets larger.

Before analyzing naive Gauss elimination, we will first define some quantities that
facilitate operation counting:

doefy=c) fi) Y f@+gi=) fir+) g (9.18a,b)
i=1 i=1 i=1

= i—1 i—1
m m
Zl=1+1—|—1+~~+1=m Zl:m—k+1 (9.18¢,d)
i1 ik
m m(m +1 m?
Zi=1+2+3+-«-+m=%=7+0(m) (9.18¢)
i1
m, mm+1)@2m+1) md

212402 324 ... 4m2— (m + 33(+):?+O(m2) (9.18)
i—1

where O(m") means “terms of order m" and lower.”

Now let us examine the naive Gauss elimination algorithm (Fig. 9.4a) in detail. We
will first count the flops in the elimination stage. On the first pass through the outer loop,
k = 1. Therefore, the limits on the middle loop are from i = 2 to n. According to
Eq. (9.18d), this means that the number of iterations of the middle loop will be

n
Y l=n-241=n-1 (9.19)
i=2
For every one of these iterations, there is one division to define the factor. The interior loop
then performs a single multiplication and subtraction for each iteration from j = 2 to n. Fi-
nally, there is one additional multiplication and subtraction for the right-hand-side value.

9.2 NAIVE GAUSS ELIMINATION 253

Thus, for every iteration of the middle loop, the number of multiplications is
1+N—-24+1]+1=1+n (9.20)

The total multiplications for the first pass through the outer loop is therefore obtained by
multiplying Eqg. (9.19) by (9.20) to give [n — 1](1 + n). In like fashion, the number of sub-
tractions is computed as [n — 1](n).

Similar reasoning can be used to estimate the flops for the subsequent iterations of the
outer loop. These can be summarized as

Outer Loop Middle Loop Addition/Subtraction Multiplication/Division
k i flops flops
1 2,n (n = 1)n) (n—=Tn+1)
2 3, n (n=2)n=1) (n— 2)n)
k. /<+.1,n (n—Kn4+ 1=k (n— K42 — Kk
no] 0 n2) e

Therefore, the total addition/subtraction flops for elimination can be computed as

n-1 n—1
Y=k +1-k =Y [n+1) —k@n+1) +k]
k=1 k=1

or

n-1 n-1 n-1
nn+1)Y 1-@n+1)> k+ Y k2
k=1 k=1 k=1

Applying some of the relationships from Eq. (9.18) yields

1 7 3
[N+ 0m]—[n*+0Mmd)]+ §n3 +0Mn?)| = % +0() (9.21)
A similar analysis for the multiplication/division flops yields
r] 3
[n® 4+ 0M»)] —[n*+ O] + %nf* +0(n% | = % +0(n% (9.22)

Summing these results gives
2n®
? + O(n?-)

Thus, the total number of flops is equal to 2n®/3 plus an additional component pro-
portional to terms of order n? and lower. The result is written in this way because as n gets
large, the O(n?) and lower terms become negligible. We are therefore justified in conclud-
ing that for large n, the effort involved in forward elimination converges on 2n3/3.

Because only a single loop is used, back substitution is much simpler to evaluate. The
number of addition/subtraction flops is equal to n(n — 1)/2. Because of the extra division

254

GAUSS ELIMINATION

9.3

TABLE 9.1 Number of flops for Gauss elimination.

Back Total Percent Due

n Elimination Substitution Flops 2n%/3 to Elimination
10 705 100 805 667 87.58%
100 671550 10000 681550 666667 98.53%
1000 6.67 x 108 1 x 10% 6.68 x 108 6.67 x 108 99.85%

prior to the loop, the number of multiplication/division flops is n(n + 1) /2. These can be
added to arrive at a total of

n?+0(n)

Thus, the total effort in naive Gauss elimination can be represented as

2nd . 2ns
T + O(I’lz) + n2 + O(n) as n increases ? + O(nz) (9.23)
Forward Backward
elimination substitution

Two useful general conclusions can be drawn from this analysis:

1. As the system gets larger, the computation time increases greatly. As in Table 9.1, the
amount of flops increases nearly three orders of magnitude for every order of magnitude
increase in the dimension.

2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method
more efficient should probably focus on this step.

PITFALLS OF ELIMINATION METHODS

Whereas there are many systems of equations that can be solved with naive Gauss elimi-
nation, there are some pitfalls that must be explored before writing a general computer pro-
gram to implement the method. Although the following material relates directly to naive
Gauss elimination, the information is relevant for other elimination techniques as well.

9.3.1 Division by Zero

The primary reason that the foregoing technique is called “naive” is that during both the
elimination and the back-substitution phases, it is possible that a division by zero can
occur. For example, if we use naive Gauss elimination to solve

2Xy +3x3 =8
4X; + 6X2 + 7x3 = —3
2X1 + X2 +6X3 =5
the normalization of the first row would involve division by a;; = 0. Problems also can

arise when a coefficient is very close to zero. The technique of pivoting has been developed
to partially avoid these problems. It will be described in Sec. 9.4.2.

9.3 PITFALLS OF ELIMINATION METHODS 255

EXAMPLE 9.6

9.3.2 Round-Off Errors

Even though the solution in Example 9.5 was close to the true answer, there was a slight
discrepancy in the result for x3 [Eqg. (E9.5.10)]. This discrepancy, which amounted to a rel-
ative error of —0.00043 percent, was due to our use of six significant figures during the
computation. If we had used more significant figures, the error in the results would be re-
duced further. If we had used fractions instead of decimals (and consequently avoided
round-off altogether), the answers would have been exact. However, because computers
carry only a limited number of significant figures (recall Sec. 3.4.1), round-off errors can
occur and must be considered when evaluating the results.

The problem of round-off error can become particularly important when large num-
bers of equations are to be solved. This is due to the fact that every result is dependent on
previous results. Consequently, an error in the early steps will tend to propagate—that is, it
will cause errors in subsequent steps.

Specifying the system size where round-off error becomes significant is complicated
by the fact that the type of computer and the properties of the equations are determining
factors. A rough rule of thumb is that round-off error may be important when dealing with
100 or more equations. In any event, you should always substitute your answers back into
the original equations to check whether a substantial error has occurred. However, as dis-
cussed below, the magnitudes of the coefficients themselves can influence whether such an
error check ensures a reliable result.

9.3.3 lll-Conditioned Systems

The adequacy of the solution depends on the condition of the system. In Sec. 9.1.1, a graph-
ical depiction of system condition was developed. As discussed in Sec. 4.2.3, well-
conditioned systems are those where a small change in one or more of the coefficients results
in a similar small change in the solution. Ill-conditioned systems are those where small
changes in coefficients result in large changes in the solution. An alternative interpretation
of ill-conditioning is that a wide range of answers can approximately satisfy the equations.
Because round-off errors can induce small changes in the coefficients, these artificial
changes can lead to large solution errors for ill-conditioned systems, as illustrated in the
following example.

ll-Conditioned Systems
Problem Statement. Solve the following system:

X1 + 2%, = 10 (E9.6.1)
1.1x; 4+ 2x, = 10.4 (E9.6.2)

Then, solve it again, but with the coefficient of x; in the second equation modified slightly
to 1.05.

Solution. Using Egs. (9.10) and (9.11), the solution is

L 200 —2(104) _
T 12 —2n)

256

GAUSS ELIMINATION

o — 1(10.4) — 1.1(10) _
2T 1221
However, with the slight change of the coefficient a,; from 1.1 to 1.05, the result is
changed dramatically to
‘. — 2(10) —2(10.4)
Y12 —2(1.05)
. — 1(10.4) — 1.1(10)
2T 1) 20105
Notice that the primary reason for the discrepancy between the two results is that the
denominator represents the difference of two almost-equal numbers. As illustrated previ-
ously in Sec. 3.4.2, such differences are highly sensitive to slight variations in the numbers
being manipulated.
At this point, you might suggest that substitution of the results into the original equa-
tions would alert you to the problem. Unfortunately, for ill-conditioned systems this is often

not the case. Substitution of the erroneous values of x; = 8 and x, = 1 into Egs. (E9.6.1)
and (E9.6.2) yields

8+2(1) =10 = 10
1.1(8) +2(1) = 10.8 = 10.4

Therefore, although x; = 8 and x, = 1 is not the true solution to the original problem, the
error check is close enough to possibly mislead you into believing that your solutions are
adequate.

As was done previously in the section on graphical methods, a visual representative of
ill-conditioning can be developed by plotting Egs. (E9.6.1) and (E9.6.2) (recall Fig. 9.2).
Because the slopes of the lines are almost equal, it is visually difficult to see exactly where
they intersect. This visual difficulty is reflected quantitatively in the nebulous results of
Example 9.6. We can mathematically characterize this situation by writing the two equa-
tions in general form:

aiXy +apXx, =b (9.24)
A21X1 + axpXz2 = by (9.25)

Dividing Eqg. (9.24) by a;, and Eq. (9.25) by a,, and rearranging yields alternative versions
that are in the format of straight lines [x, = (slope) x; + intercept]:

an b1
X = ——X1+ —
ap ap
an b,
X = ——X1+ —
az az

Consequently, if the slopes are nearly equal,
du . A1
drp A

9.3 PITFALLS OF ELIMINATION METHODS 257

EXAMPLE 9.7

or, cross-multiplying,
ady = apay
which can be also expressed as
apay —apay =0 (9.26)

Now, recalling that aj;a, — ajay is the determinant of a two-dimensional system
[Eg. (9.3)], we arrive at the general conclusion that an ill-conditioned system is one with a
determinant close to zero. In fact, if the determinant is exactly zero, the two slopes are iden-
tical, which connotes either no solution or an infinite number of solutions, as is the case for
the singular systems depicted in Fig. 9.2a and b.

It is difficult to specify how close to zero the determinant must be to indicate ill-
conditioning. This is complicated by the fact that the determinant can be changed by mul-
tiplying one or more of the equations by a scale factor without changing the solution. Con-
sequently, the determinant is a relative value that is influenced by the magnitude of the
coefficients.

Effect of Scale on the Determinant
Problem Statement. Evaluate the determinant of the following systems:

(a) From Example 9.1:

3X1 + 2%, =18 (E9.7.1)
—X1 +2Xp =2 (E9.7.2)

(b) From Example 9.6:

X1 + 2%, = 10 (E9.7.3)
1.1%; + 2%, = 10.4 (E9.7.4)

(c) Repeat (b) but with the equations multiplied by 10.

Solution.

(&) The determinant of Eqgs. (E9.7.1) and (E9.7.2), which are well-conditioned, is
D=32) —-2(-1) =38

(b) The determinant of Eqgs. (E9.7.3) and (E9.7.4), which are ill-conditioned, is
D=12) —2(1.1) =-0.2

(c) The results of (a) and (b) seem to bear out the contention that ill-conditioned systems
have near-zero determinants. However, suppose that the ill-conditioned system in
(b) is multiplied by 10 to give
10x; + 20x, = 100
11x1 4+ 20x, = 104

The multiplication of an equation by a constant has no effect on its solution. In
addition, it is still ill-conditioned. This can be verified by the fact that multiplying by a

258

GAUSS ELIMINATION

EXAMPLE 9.8

constant has no effect on the graphical solution. However, the determinant is dramat-
ically affected:

D = 10(20) — 20(11) = —20

Not only has it been raised two orders of magnitude, but it is now over twice as large
as the determinant of the well-conditioned system in ().

As illustrated by the previous example, the magnitude of the coefficients interjects a
scale effect that complicates the relationship between system condition and determinant
size. One way to partially circumvent this difficulty is to scale the equations so that the
maximum element in any row is equal to 1.

Scaling

Problem Statement. Scale the systems of equations in Example 9.7 to a maximum value
of 1 and recompute their determinants.

Solution.
(a) For the well-conditioned system, scaling results in

X1+ 0.667x, = 6
—0.5x1 + Xo=1

for which the determinant is
D=1(1) —0.667(-0.5) = 1.333
(b) For the ill-conditioned system, scaling gives

0.5X; + X, =5
0.55x1 +x, =5.2

for which the determinant is
D =0.5(1) — 1(0.55) = —0.05

(c) For the last case, scaling changes the system to the same form as in (b) and the
determinant is also —0.05. Thus, the scale effect is removed.

In a previous section (Sec. 9.1.2), we suggested that the determinant is difficult to
compute for more than three simultaneous equations. Therefore, it might seem that it does
not provide a practical means for evaluating system condition. However, as described in
Box 9.1, there is a simple algorithm that results from Gauss elimination that can be used to
evaluate the determinant.

Aside from the approach used in the previous example, there are a variety of other ways
to evaluate system condition. For example, there are alternative methods for normalizing the
elements (see Stark, 1970). In addition, as described in the next chapter (Sec. 10.3), the ma-
trix inverse and matrix norms can be employed to evaluate system condition. Finally, a
simple (but time-consuming) test is to modify the coefficients slightly and repeat the

9.3 PITFALLS OF ELIMINATION METHODS

259

Box 9.1

In Sec. 9.1.2, we stated that determinant evaluation by expansion of
minors was impractical for large sets of equations. Thus, we con-
cluded that Cramer’s rule would be applicable only to small sys-
tems. However, as mentioned in Sec. 9.3.3, the determinant has
value in assessing system condition. It would, therefore, be useful
to have a practical method for computing this quantity.
Fortunately, Gauss elimination provides a simple way to do this.
The method is based on the fact that the determinant of a trian-
gular matrix can be simply computed as the product of its diagonal

elements:
D =apazpaz -+ am (B9.1.1)

The validity of this formulation can be illustrated for a 3 by 3 system:

i arp a
D=|0 a» ax
0 0 az
where the determinant can be evaluated as [recall Eq. (9.4)]
D—ay ap axs| ; 0 az N 0 ax
0 as3 0 0 0

or, by evaluating the minors (that is, the 2 by 2 determinants),

D = ajjapass — app(0) + a13(0) = anazas

Determinant Evaluation Using Gauss Elimination

Recall that the forward-elimination step of Gauss elimination
results in an upper triangular system. Because the value of the de-
terminant is not changed by the forward-elimination process, the
determinant can be simply evaluated at the end of this step via

D =anajyay --- aih? (B9.1.2)
where the superscripts signify the number of times that the ele-
ments have been modified by the elimination process. Thus, we can
capitalize on the effort that has already been expended in reducing
the system to triangular form and, in the bargain, come up with a
simple estimate of the determinant.

There is a slight modification to the above approach when the
program employs partial pivoting (Sec. 9.4.2). For this case, the de-
terminant changes sign every time a row is pivoted. One way to
represent this is to modify Eq. (B9.1.2):

D =anayay --- an V(=1)° (B9.1.3)
where p represents the number of times that rows are pivoted.
This modification can be incorporated simply into a program;
merely keep track of the number of pivots that take place during the
course of the computation and then use Eq. (B9.1.3) to evaluate the
determinant.

solution. If such modifications lead to drastically different results, the system is likely to be

ill-conditioned.

As you might gather from the foregoing discussion, ill-conditioned systems are prob-
lematic. Fortunately, most linear algebraic equations derived from engineering-problem
settings are naturally well-conditioned. In addition, some of the techniques outlined in
Sec. 9.4 help to alleviate the problem.

9.3.4 Singular Systems

In the previous section, we learned that one way in which a system of equations can be ill-
conditioned is when two or more of the equations are nearly identical. Obviously, it is even
worse when the two are identical. In such cases, we would lose one degree of freedom, and
would be dealing with the impossible case of n — 1 equations with n unknowns. Such cases
might not be obvious to you, particularly when dealing with large equation sets. Conse-
quently, it would be nice to have some way of automatically detecting singularity.

The answer to this problem is neatly offered by the fact that the determinant of a sin-
gular system is zero. This idea can, in turn, be connected to Gauss elimination by recog-
nizing that after the elimination step, the determinant can be evaluated as the product of the
diagonal elements (recall Box 9.1). Thus, a computer algorithm can test to discern whether
a zero diagonal element is created during the elimination stage. If one is discovered, the
calculation can be immediately terminated and a message displayed alerting the user. We

260

GAUSS ELIMINATION

9.4

EXAMPLE 9.9

will show the details of how this is done when we present a full algorithm for Gauss elim-
ination later in this chapter.

TECHNIQUES FOR IMPROVING SOLUTIONS

The following techniques can be incorporated into the naive Gauss elimination algorithm
to circumvent some of the pitfalls discussed in the previous section.

9.4.1 Use of More Significant Figures

The simplest remedy for ill-conditioning is to use more significant figures in the computa-
tion. If your application can be extended to handle larger word size, such a feature will
greatly reduce the problem. However, a price must be paid in the form of the computational
and memory overhead connected with using extended precision (recall Sec. 3.4.1).

9.4.2 Pivoting

As mentioned at the beginning of Sec. 9.3, obvious problems occur when a pivot element
is zero because the normalization step leads to division by zero. Problems may also arise
when the pivot element is close to, rather than exactly equal to, zero because if the magni-
tude of the pivot element is small compared to the other elements, then round-off errors can
be introduced.

Therefore, before each row is normalized, it is advantageous to determine the largest
available coefficient in the column below the pivot element. The rows can then be switched
so that the largest element is the pivot element. This is called partial pivoting. If columns
as well as rows are searched for the largest element and then switched, the procedure is
called complete pivoting. Complete pivoting is rarely used because switching columns
changes the order of the x’s and, consequently, adds significant and usually unjustified
complexity to the computer program. The following example illustrates the advantages of
partial pivoting. Aside from avoiding division by zero, pivoting also minimizes round-off
error. As such, it also serves as a partial remedy for ill-conditioning.

Partial Pivoting

Problem Statement. Use Gauss elimination to solve

0.0003x; + 3.0000x, = 2.0001
1.0000x; + 1.0000x, = 1.0000

Note that in this form the first pivot element, a;; = 0.0003, is very close to zero. Then
repeat the computation, but partial pivot by reversing the order of the equations. The exact
solutionis x; = 1/3 and x, = 2/3.

Solution. Multiplying the first equation by 1/(0.0003) yields
X1 + 10,000x, = 6667
which can be used to eliminate x; from the second equation:

—9999x, = —6666

9.4 TECHNIQUES FOR IMPROVING SOLUTIONS 261

which can be solved for

This result can be substituted back into the first equation to evaluate x;:
= 2.0001 — 3(2/3)
LT 0.0003

However, due to subtractive cancellation, the result is very sensitive to the number of sig-
nificant figures carried in the computation:

(E9.9.1)

Absolute Value

of Percent
Significant Relative Error

Figures X2 xq for x;

3 0.667 -3.33 1099

4 0.6667 0.0000 100

5 0.66667 0.30000 10

6 0.666667 0.330000]

7 0.6666667 0.3330000 0.1

Note how the solution for x; is highly dependent on the number of significant figures. This
is because in Eqg. (E9.9.1), we are subtracting two almost-equal numbers. On the other
hand, if the equations are solved in reverse order, the row with the larger pivot element is
normalized. The equations are

1.0000x; + 1.0000x, = 1.0000

0.0003x; + 3.0000x, = 2.0001
Elimination and substitution yield x, = 2/3. For different numbers of significant figures, x;
can be computed from the first equation, as in
_1-(2/3)
1
This case is much less sensitive to the number of significant figures in the computation:

1 (£9.9.2)

Absolute Value

of Percent
Significant Relative Error

Figures X2 xq for x;

3 0.667 0.333 0.1

4 0.6667 0.3333 0.01

5 0.66667 0.33333 0.001

6 0.666667 0.333333 0.0001

7 0.6666667 0.3333333 0.00001

Thus, a pivot strategy is much more satisfactory.

262

GAUSS ELIMINATION

p =k
big = |ak«|
DOFOR i1 = k+1, n
dummy = |aji
IF (dummy > big)
big = dummy
p=1i
END IF
END DO
IF (p # k)
DOFOR jj = k, n
dummy = ap, i

p.jj = dk.jj
ak,jj = dummy

END DO

dummy = by

by = bx

by = dummy

END IF
FIGURE 9.5

Pseudocode to implement par-

fial pivoting.

EXAMPLE 9.10

General-purpose computer programs must include a pivot strategy. Figure 9.5 pro-
vides a simple algorithm to implement such a strategy. Notice that the algorithm consists
of two major loops. After storing the current pivot element and its row number as the vari-
ables, big and p, the first loop compares the pivot element with the elements below it to
check whether any of these is larger than the pivot element. If so, the new largest element
and its row number are stored in big and p. Then, the second loop switches the original
pivot row with the one with the largest element so that the latter becomes the new pivot
row. This pseudocode can be integrated into a program based on the other elements of
Gauss elimination outlined in Fig. 9.4. The best way to do this is to employ a modular ap-
proach and write Fig. 9.5 as a subroutine (or procedure) that would be called directly after
the beginning of the first loop in Fig. 9.4a.

Note that the second IF/THEN construct in Fig. 9.5 physically interchanges the rows.
For large matrices, this can become quite time consuming. Consequently, most codes do
not actually exchange rows but rather keep track of the pivot rows by storing the appropri-
ate subscripts in a vector. This vector then provides a basis for specifying the proper row
ordering during the forward-elimination and back-substitution operations. Thus, the oper-
ations are said to be implemented in place.

9.4.3 Scaling

In Sec. 9.3.3, we proposed that scaling had value in standardizing the size of the deter-
minant. Beyond this application, it has utility in minimizing round-off errors for those
cases where some of the equations in a system have much larger coefficients than others.
Such situations are frequently encountered in engineering practice when widely different
units are used in the development of simultaneous equations. For instance, in electric-
circuit problems, the unknown voltages can be expressed in units ranging from microvolts
to kilovolts. Similar examples can arise in all fields of engineering. As long as each
equation is consistent, the system will be technically correct and solvable. However, the
use of widely differing units can lead to coefficients of widely differing magnitudes. This,
in turn, can have an impact on round-off error as it affects pivoting, as illustrated by the
following example.

Effect of Scaling on Pivoting and Round-Off

Problem Statement.

(a) Solve the following set of equations using Gauss elimination and a pivoting strategy:
2x1 + 100,000x, = 100,000

X1+ Xo =2

(b) Repeat the solution after scaling the equations so that the maximum coefficient in each
row is 1.

(c) Finally, use the scaled coefficients to determine whether pivoting is necessary.
However, actually solve the equations with the original coefficient values. For all

cases, retain only three significant figures. Note that the correct answers are x; =
1.00002 and x, = 0.99998 or, for three significant figures, x; = x, = 1.00.

9.4 TECHNIQUES FOR IMPROVING SOLUTIONS 263

Solution.

(@)

(b)

(©)

Without scaling, forward elimination is applied to give

2X1 + 100,000x, = 100,000
—50,000x, = —50,000

which can be solved by back substitution for

X, = 1.00
x1 = 0.00

Although x; is correct, x; is 100 percent in error because of round-off.
Scaling transforms the original equations to

0.00002%x; +x2, =1
X1+ X =2

Therefore, the rows should be pivoted to put the greatest value on the diagonal.

X1+ Xo =2
0.00002%x; +x2, =1

Forward elimination yields

X1+ X =2
X, = 1.00

which can be solved for

Thus, scaling leads to the correct answer.
The scaled coefficients indicate that pivoting is necessary. We therefore pivot but
retain the original coefficients to give

X1 + Xo =2
2x1 + 100,000x, = 100,000

Forward elimination yields

X1 + Xo =2
100,000x, = 100,000
which can be solved for the correct answer: x; = X, = 1. Thus, scaling was useful in

determining whether pivoting was necessary, but the equations themselves did not
require scaling to arrive at a correct result.

264 GAUSS ELIMINATION

SUB Gauss (a, b, n, x, tol, er)
DIMENSION s(n)
er =20
DOFOR i =1, n
Si = ABS(&u)
DOFOR j = 2, n
IF ABS(&f,j)>Sj THEN s; = ABS(df,j)
END DO
END DO
CALL Eliminate(a, s, n, b, tol, er)
IF er # —1 THEN
CALL Substitute(a, n, b, x)
END IF
END Gauss

SUB Eliminate (a, s, n, b, tol, er)
DOFOR k = 1, n — 1
CALL Pivot (a, b, s, n, k)
IF ABS (ayi/sk) < tol THEN
er = —1
EXIT DO
END IF
DOFOR i = k + 1, n
factor = aj /ak «
DOFOR j = k + 1, n
aj,j = aj,j — factor*ay ;
END DO
b; = b; — factor * by
END DO
END DO
IF ABS(ap,n/sn) < tol THEN er = —1
END Eliminate

FIGURE 9.6

Pseudocode to implement Gauss elimination with partial pivoting.

SUB Pivot (a, b, s, n, k)
p =k
bfg = ABS(ak’k/sk)
DOFOR ii = k+ 1, n
dummy = ABS(aji «/S;ii)
IF dummy > big THEN
big = dummy
p=1i
END IF
END DO
IF p # k THEN
DOFOR jj = k, n
dummy = ap,jj
dp,jj = dk,jj
ak,j; = dummy
END DO
dummy = by
by = bk
by = dummy
dummy = sp
Sp = Sk
Sx = dummy
END IF
END pivot

SUB Substitute (a, n, b, x)
Xn = bp/ann
DOFOR i =n— 1, 1, —1
sum = 0
DOFOR j = 1 + 1, n
sum = sum + aij * Xj
END DO
Xp = (by — sum) / app
END DO
END Substitute

9.4 TECHNIQUES FOR IMPROVING SOLUTIONS 265

EXAMPLE 9.11

As in the previous example, scaling has utility in minimizing round-off. However,
it should be noted that scaling itself also leads to round-off. For example, given the
equation

2x1 +300,000x, =1
and using three significant figures, scaling leads to
0.00000667x; + x2 = 0.00000333

Thus, scaling introduces a round-off error to the first coefficient and the right-hand-side
constant. For this reason, it is sometimes suggested that scaling should be employed only
as in part (c) of the preceding example. That is, it is used to calculate scaled values for the
coefficients solely as a criterion for pivoting, but the original coefficient values are retained
for the actual elimination and substitution computations. This involves a trade-off if the de-
terminant is being calculated as part of the program. That is, the resulting determinant will
be unscaled. However, because many applications of Gauss elimination do not require de-
terminant evaluation, it is the most common approach and will be used in the algorithm in
the next section.

9.4.4 Computer Algorithm for Gauss Elimination

The algorithms from Figs. 9.4 and 9.5 can now be combined into a larger algorithm to im-
plement the entire Gauss elimination algorithm. Figure 9.6 shows an algorithm for a gen-
eral subroutine to implement Gauss elimination.

Note that the program includes modules for the three primary operations of the Gauss
elimination algorithm: forward elimination, back substitution, and pivoting. In addition,
there are several aspects of the code that differ and represent improvements over the
pseudocodes from Figs. 9.4 and 9.5. These are:

» The equations are not scaled, but scaled values of the elements are used to determine
whether pivoting is to be implemented.

e The diagonal term is monitored during the pivoting phase to detect near-zero
occurrences in order to flag singular systems. If it passes back a value of er = —1, a
singular matrix has been detected and the computation should be terminated. A
parameter tol is set by the user to a small number in order to detect near-zero occur-
rences.

Solution of Linear Algebraic Equations Using the Computer

Problem Statement. A computer program to solve linear algebraic equations such as one
based on Fig. 9.6 can be used to solve a problem associated with the falling parachutist ex-
ample discussed in Chap. 1. Suppose that a team of three parachutists is connected by a
weightless cord while free-falling at a velocity of 5 m/s (Fig. 9.7). Calculate the tension in
each section of cord and the acceleration of the team, given the following:

GAUSS ELIMINATION

FIGURE 9.7

Three parachutists free-falling
while connected by weightless
cords.

FIGURE 9.8

Free-body diagrams for each of the three falling parachutists.

Mass, Drag Coefficient,
Parachutist kg kg/s
1 70 10
2 60 14
3 40 17

Solution. Free-body diagrams for each of the parachutists are depicted in Fig. 9.8. Sum-
ming the forces in the vertical direction and using Newton’s second law gives a set of three
simultaneous linear equations:

mig—T —cv =ma
myg+T —Cv — R =ma
msg —C3v+ R =msa

These equations have three unknowns: a, T, and R. After substituting the known values, the
equations can be expressed in matrix form as (g = 9.8 m/s?),

700 1 07f(a 636
60 -1 1|4 T ;=42518
40 0 —-1JLR 307

This system can be solved using your own software. The result is a = 8.5941 m/s%;, T =
34.4118 N; and R = 36.7647 N.

9.6 NONLINEAR SYSTEMS OF EQUATIONS 267

9.5

9.6

COMPLEX SYSTEMS

In some problems, it is possible to obtain a complex system of equations
[Cl{Z} = {W} (9.27)

where

[C]1=[Al+i[B]
{Z}) = {X} +i{Y}
(W} ={U}+i{V} (9.28)

where i = +/—1.

The most straightforward way to solve such a system is to employ one of the algo-
rithms described in this part of the book, but replace all real operations with complex ones.
Of course, this is only possible for those languages, such as Fortran, that allow complex
variables.

For languages that do not permit the declaration of complex variables, it is possible to
write a code to convert real to complex operations. However, this is not a trivial task. An
alternative is to convert the complex system into an equivalent one dealing with real vari-
ables. This can be done by substituting Eq. (9.28) into Eq. (9.27) and equating real and
complex parts of the resulting equation to yield

[Al{X} = [BI{Y} = {U} (9.29)
and
[BI{X} +[AIlY} = {V} (9.30)

Thus, the system of n complex equations is converted to a set of 2n real ones. This
means that storage and execution time will be increased significantly. Consequently, a
trade-off exists regarding this option. If you evaluate complex systems infrequently, it is
preferable to use Egs. (9.29) and (9.30) because of their convenience. However, if you use
them often and desire to employ a language that does not allow complex data types, it may
be worth the up-front programming effort to write a customized equation solver that con-
verts real to complex operations.

NONLINEAR SYSTEMS OF EQUATIONS

Recall that at the end of Chap. 6 we presented an approach to solve two nonlinear equations
with two unknowns. This approach can be extended to the general case of solving n simul-
taneous nonlinear equations.

fl(X]_, X27 R Xn) = 0
fZ(X].? X27 ey Xn) = O

(9.31)

fn(Xl’XZ’ »-an) = 0

268

GAUSS ELIMINATION

The solution of this system consists of the set of x values that simultaneously result in all
the equations equaling zero.

As described in Sec. 6.5.2, one approach to solving such systems is based on a multi-
dimensional version of the Newton-Raphson method. Thus, a Taylor series expansion is
written for each equation. For example, for the kth equation,

fits = fii + X1 — X -)E+(x it1 — X ')%+--~+(X i+1 — X)%
k,i+1 — Tkii 1i+1 1,i 3X1 2,i+1 2,i aXz n,i+1 n,i 8xn

(9.32)

where the first subscript, k, represents the equation or unknown and the second subscript
denotes whether the value or function in question is at the present value (i) or at the next
value (i + 1).

Equations of the form of (9.32) are written for each of the original nonlinear equations.
Then, as was done in deriving Eq. (6.20) from (6.19), all fi ;.1 terms are set to zero as would
be the case at the root, and Eq. (9.32) can be written as

afk.i afii afk.i
i A X X g
9X1 9%z 9Xn
e Bfk,i 4 % 8fk,i n 4 8fk,i (9.33)
= Alji+1 3X1 2,i+1 8X2 n,i+1 3Xn .

Notice that the only unknowns in Eq. (9.33) are the X i;1 terms on the right-hand side. All
other quantities are located at the present value (i) and, thus, are known at any iteration.
Consequently, the set of equations generally represented by Eq. (9.33) (that is, with k = 1,
2,...,N) constitutes a set of linear simultaneous equations that can be solved by methods
elaborated in this part of the book.

Matrix notation can be employed to express Eq. (9.33) concisely. The partial deriva-
tives can be expressed as

afy; ofy afy; |
e
3f2,i afg,i 8f27i
o
[Z2] =) .) (9.34)
afni ofn 0fn.i
B 0X1 0Xp o 0Xn |

The initial and final values can be expressed in vector form as
(Xi}T = X0 Xei -+ Xl
and

.
{Xiz1) = Xuit1 Xoigr -+ Xnig1d

9.7 GAUSS-JORDAN 269

an al2
azi a2
|31 432

)

0

0o o

X]

X2

FIGURE 9.9

a3 b
an3 by
as3 b |
0 b
0 by
sl
_ b(r]v}
— b
X3 _ blg}

Graphical depiction of the

Gaussjordan

method.

Compare with Fig. 9.3 to
elucidate the differences be-
tween this technique and Gauss
elimination. The superscript (n)
means that the elements of the
righthand-side vector have
been modified n times (for this

case, n = 3).

9.7

EXAMPLE 9.12

Finally, the function values at i can be expressed as

(FYT =1 foi - foil
Using these relationships, Eq. (9.33) can be represented co